common.py 145.5 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16 17
import warnings
from functools import reduce
18 19 20

import numpy as np

21
import paddle
22
from paddle.common_ops_import import (
23
    LayerHelper,
24 25 26 27
    check_type,
    check_variable_and_dtype,
    utils,
)
28
from paddle.fluid import core
29 30 31 32 33
from paddle.fluid.data_feeder import check_dtype
from paddle.fluid.framework import Variable, _non_static_mode, static_only
from paddle.fluid.initializer import Constant, Normal
from paddle.fluid.layers.layer_function_generator import templatedoc
from paddle.fluid.param_attr import ParamAttr
34

35 36
__all__ = []

37 38

@static_only
39 40 41 42 43 44 45 46 47
def fc(
    x,
    size,
    num_flatten_dims=1,
    weight_attr=None,
    bias_attr=None,
    activation=None,
    name=None,
):
48
    r"""
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    Fully-Connected layer can take a tensor or a list of tensor as its inputs.
    It creates a 2-D weight tensor for each input tensor, which represents its
    weight matrix from each input unit to each output unit. The fully connected
    layer multiplies each input tensor with its corresponding weight to produce
    an output tensor with shape :math:`[batch\_size, *, size]` , where :math:`*`
    means any number of additional dimensions. If a list of tensor is given,
    the results of multiple output tensors with shape :math:`[batch\_size, *, size]`
    will be summed up. If :attr:`bias_attr` is not False, a 1-D bias tensor will
    be created and added to the output. Finally, if :attr:`activation` is not None,
    it will be applied to the output as well.

    For a single input tensor :math:`X` , the equation is:

    .. math::

        Out = Act({XW + b})

    For a list of input tensor, the equation is:

    .. math::

        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})

    where:

    * :math:`N`: The number of the input tensors. :math:`N` equals to :math:`len(X)` if :math:`X` is list of tensor.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weight matrix corresponding i-th input tensor.
    * :math:`b`: The bias created by this layer (if needed).
    * :math:`Act`: The activation function.
    * :math:`Out`: The output tensor.

    .. code-block:: text

        # Case 1, input is a single tensor:
        x.data = [[[0.1, 0.2],
                   [0.3, 0.4]]]
        x.shape = (1, 2, 2) # 1 is batch_size

        out = paddle.static.nn.fc(x=x, size=1, num_flatten_dims=2)

        # Get the output:
        out.data = [[0.83234344], [0.34936576]]
        out.shape = (1, 2, 1)

        # Case 2, input is a list of tensor:
        x0.data = [[[0.1, 0.2],
                    [0.3, 0.4]]]
        x0.shape = (1, 2, 2) # 1 is batch_size

        x1.data = [[[0.1, 0.2, 0.3]]]
        x1.shape = (1, 1, 3)

        out = paddle.static.nn.fc(x=[x0, x1], size=2)

        # Get the output:
        out.data = [[0.18669507, 0.1893476]]
        out.shape = (1, 2)

    Args:
110
        x (Tensor|list[Tensor]|tuple[Tensor]): A tensor or a list/tuple of tensors. The number of dimensions
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
            of each tensor is at least 2. The data type should be float16, float32 or float64.
        size (int): The number of output units in this layer, which also means the feature
            size of output tensor.
        num_flatten_dims (int, optional): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multi-dimensional tensor will first be flattened
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            tensor is flattened: the first :math:`num\_flatten\_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest :math:`rank(x) - num\_flatten\_dims` dimensions are
            flattened to form the second dimension of the final matrix (width of the matrix).
            For example, assuming that :attr:`x` is a 5-dimensional tensor with a shape
            :math:`[2, 3, 4, 5, 6]` , and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape :math:`[2 * 3 * 4, 5 * 6] = [24, 30]` .
            Default: 1.
        weight_attr (ParamAttr, optional): The attribute for the learnable weight.
            The default value is None, and the weight will be initialized to zero.
            For detailed information, please refer to :attr:`paddle.ParamAttr`.
J
joejiong 已提交
128
            Warning, if x is a list of tensor, weight_attr should also be a list of same length.
129
        bias_attr (ParamAttr|bool, optional): The attribute of the learnable bias.
130 131 132 133
            If it is set to False, no bias will be added to the output.
            If it is set to None or one kind of ParamAttr, a bias parameter will
            be created according to ParamAttr. For detailed information, please refer
            to :attr:`paddle.ParamAttr`. The default value is None and the bias will be
134
            initialized to zero.
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        activation (str, optional): Activation to be applied to the output of
            this layer, such as tanh, softmax, sigmoid, relu. For more information,
            please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None. Normally there is no need for user to set
            it. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, its shape is :math:`[batch\_size, *, size]` , and the data type is same with input.

    Examples:
        .. code-block:: python

          import paddle
          paddle.enable_static()

          # When input is a single tensor
          x = paddle.static.data(name="x", shape=[1, 2, 2], dtype="float32")
          # x: [[[0.1 0.2]
          #      [0.3 0.4]]]
          out = paddle.static.nn.fc(
              x=x,
              size=1,
              num_flatten_dims=2,
              weight_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(value=0.5)),
              bias_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(value=1.0)))
          # out: [[[1.15]
          #        [1.35]]]

          # When input is multiple tensors
          x0 = paddle.static.data(name="x0", shape=[1, 2, 2], dtype="float32")
          # x0: [[[0.1 0.2]
          #       [0.3 0.4]]]
          x1 = paddle.static.data(name="x1", shape=[1, 1, 3], dtype="float32")
          # x1: [[[0.1 0.2 0.3]]]
          out = paddle.static.nn.fc(
              x=[x0, x1],
              size=2,
              weight_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(value=0.5)),
              bias_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(value=1.0)))
          # out: [[1.8 1.8]]
    """
C
Charles-hit 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

    def fc_fluid(
        input,
        size,
        num_flatten_dims=1,
        param_attr=None,
        bias_attr=None,
        act=None,
        name=None,
    ):
        helper = LayerHelper("fc", **locals())
        check_type(input, 'input', (list, tuple, Variable), 'fc')
        if isinstance(input, (list, tuple)):
            for i, input_x in enumerate(input):
                check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
        dtype = helper.input_dtype()
        check_dtype(
            dtype, 'input', ['float16', 'uint16', 'float32', 'float64'], 'fc'
        )
        mul_results = []
        for input_var, param_attr in helper.iter_inputs_and_params():
            input_shape = input_var.shape
            if num_flatten_dims == -1:
                num_flatten_dims = len(input_shape) - 1
            param_shape = [
                reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
            ] + [size]

            w = helper.create_parameter(
                attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False
            )
            tmp = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type="mul",
                inputs={"X": input_var, "Y": w},
                outputs={"Out": tmp},
                attrs={"x_num_col_dims": num_flatten_dims, "y_num_col_dims": 1},
            )
            mul_results.append(tmp)

        if len(mul_results) == 1:
            pre_bias = mul_results[0]
        else:
            pre_bias = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type="sum",
                inputs={"X": mul_results},
                outputs={"Out": pre_bias},
                attrs={"use_mkldnn": False},
            )
        # add bias
        pre_activation = helper.append_bias_op(
            pre_bias, dim_start=num_flatten_dims
        )
        # add activation
        return helper.append_activation(pre_activation)

    return fc_fluid(
234 235 236 237 238 239 240 241
        input=x,
        size=size,
        num_flatten_dims=num_flatten_dims,
        param_attr=weight_attr,
        bias_attr=bias_attr,
        act=activation,
        name=name,
    )
242 243


244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
def instance_norm(
    input, epsilon=1e-05, param_attr=None, bias_attr=None, name=None
):
    r"""

    **Instance Normalization Layer**

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

264 265 266 267 268 269 270
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//
        \ mean\ of\ one\ feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i -
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Args:
        input(Tensor): The rank of input tensor can be 2, 3, 4, 5.
            The data type is float32 or float64.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None|bool, optional): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
         will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
         If the Initializer of the param_attr is not set, the parameter is initialized
         with Xavier. If the param_attr is set to False, instance_norm will not create param_attr.
             Default: None.
        bias_attr(ParamAttr|None|bool, optional): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
         will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
         If the Initializer of the bias_attr is not set, the bias is initialized zero.
             If the bias_attr is set to False, instance_norm will not create bias_attr.
         Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        A Tensor which is the result after applying instance normalization on the input,
        has same shape and data type with input.

    Examples:

        .. code-block:: python

            import paddle
            paddle.enable_static()
            x = paddle.static.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = paddle.static.nn.fc(x, size=200)
            hidden2 = paddle.static.nn.instance_norm(hidden1)
    """
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'instance_norm'
    )
    if param_attr is False:
        assert (
            bias_attr is False
        ), "param_attr and bias_attr must be set to False at the same time in instance_norm"

    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == paddle.framework.core.VarDesc.VarType.FP16:
        dtype = paddle.framework.core.VarDesc.VarType.FP32

    input_shape = input.shape
    if len(input.shape) < 2 or len(input.shape) > 5:
        raise ValueError(
            'expected 2D or 3D or 4D or 5D input (got {}D input, input shape is: {})'.format(
                len(input.shape), input_shape
            )
        )
    channel_num = input_shape[1]

    param_shape = [channel_num]

    if param_attr and bias_attr:
        # create parameter
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=param_shape,
            dtype=dtype,
            is_bias=True,
            default_initializer=Constant(0.0),
        )

    # create output
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

    inputs = {"X": input}
    if param_attr and bias_attr:
        inputs["Scale"] = scale
        inputs["Bias"] = bias

    helper.append_op(
        type="instance_norm",
        inputs=inputs,
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance,
        },
        attrs={
            "epsilon": epsilon,
        },
    )

    return instance_norm_out


W
wangzhen38 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
@static_only
def continuous_value_model(input, cvm, use_cvm=True):
    r"""
    **continuous_value_model layers**
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
    If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
    Returns:
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          import paddle
          input = paddle.static.data(name="input", shape=[64, 1], dtype="int64")
          label = paddle.static.data(name="label", shape=[64, 1], dtype="int64")
          w0 = paddle.full(shape=(100, 1), fill_value=2).astype(paddle.float32)
          embed = paddle.nn.functional.embedding(
                            input,
                            w0)
          ones = paddle.full_like(label, 1, dtype="int64")
          show_clk = paddle.cast(paddle.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = paddle.static.nn.continuous_value_model(embed, show_clk, True)
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'cvm'
    )
    helper.append_op(
        type='cvm',
        inputs={'X': [input], 'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm},
    )
    return out


431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
@static_only
def data_norm(
    input,
    act=None,
    epsilon=1e-05,
    param_attr=None,
    data_layout='NCHW',
    in_place=False,
    name=None,
    moving_mean_name=None,
    moving_variance_name=None,
    do_model_average_for_mean_and_var=True,
    slot_dim=-1,
    sync_stats=False,
    summary_decay_rate=0.9999999,
    enable_scale_and_shift=False,
):
    r"""

    **Data Normalization Layer**

    This op can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

463 464 465 466 467 468 469
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i -
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
470 471

    Args:
472 473 474 475 476
        input (Tensor): The input Tensor.
        act (str, optional): Activation type, linear|relu|prelu|... Default: None.
        epsilon(float, optional): Whether to add small values ​in​to the variance during calculations
            to prevent division by zero. Default: 1e-05.
        param_attr (ParamAttr, optional): The parameter attribute for Parameter `scale`. Default: None.
477 478 479
        data_layout (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
480 481 482 483 484 485 486 487 488 489
            `[batch_size, input_channels, input_height, input_width]`. Default: `"NCHW"`.
        in_place (bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        name (str, optional): A name for this layer (optional). If set None, the layer
            will be named automatically. Default: None.
        moving_mean_name (str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name (str, optional): The name of the moving_variance which store the global Variance. Default: None.
        do_model_average_for_mean_and_var (bool, optional): Whether parameter mean and variance
            should do model average when model average is enabled. Default: True.
        slot_dim (int, optional): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode,
            we distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first
490 491 492 493
            place of the embedding is the historical show number (occurence time of this feature id with a label 0).
            If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot
            is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate
            the show number and judge if the show number is zero. If so, we choose to skip normalization on this
494 495 496 497 498
            embedding. Default: -1.
        sync_stats (bool, optional): When running with multiple GPU cards, using allreduce to sync the
            summary messages. Default: False.
        summary_decay_rate (float, optional): The decay rate when updating summary. Default: 0.9999999.
        enable_scale_and_shift (bool, optional): do scale&shift after normalization. Default: False.
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743

    Returns:
        Tensor: A tensor which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.randn(shape=[32,100])
            hidden2 = paddle.static.nn.data_norm(input=x)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4
    scale_w_default = 1.0
    bias_default = 0.0

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)
    if enable_scale_and_shift:
        scale_w_default = param_attr.get("scale_w", 1.0)
        bias_default = param_attr.get("bias", 0.0)

    # create scale and shift(bias) when enable_scale_and_shift is True
    if name is None:
        name = "dn"
    if enable_scale_and_shift:
        scale_w = helper.create_parameter(
            attr=ParamAttr(
                name=name + '.scale_w',
                initializer=Constant(value=float(scale_w_default)),
                trainable=True,
            ),
            shape=param_shape,
            dtype=input.dtype,
        )
        bias = helper.create_parameter(
            attr=ParamAttr(
                name=name + '.bias',
                initializer=Constant(value=float(bias_default)),
                trainable=True,
            ),
            shape=param_shape,
            dtype=input.dtype,
        )
    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True,
        ),
        shape=param_shape,
        dtype=input.dtype,
    )

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True,
        ),
        shape=param_shape,
        dtype=input.dtype,
    )

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True,
        ),
        shape=param_shape,
        dtype=input.dtype,
    )

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    inputs = {
        "X": input,
        "BatchSize": batch_size,
        "BatchSum": batch_sum,
        "BatchSquareSum": batch_square_sum,
    }
    attrs = {
        "epsilon": epsilon,
        "data_layout": data_layout,
        "sync_stats": sync_stats,
        "summary_decay_rate": summary_decay_rate,
    }
    if slot_dim > 0:
        attrs["slot_dim"] = slot_dim
    if enable_scale_and_shift:
        attrs["enable_scale_and_shift"] = enable_scale_and_shift
    if enable_scale_and_shift:
        inputs["scale_w"] = scale_w
        inputs["bias"] = bias
    helper.append_op(
        type="data_norm",
        inputs=inputs,
        outputs={
            "Y": data_norm_out,
            "Means": means,
            "Scales": scales,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum,
        },
        attrs=attrs,
    )

    return helper.append_activation(data_norm_out)


@templatedoc()
def group_norm(
    input,
    groups,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    data_layout='NCHW',
    name=None,
):
    """

    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
        input(Tensor): Tensor with dimension greater than 1, the data type is float32 or float64.
        groups(int): The number of groups that divided from channels, the data type
            is int32.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero, the data type is float32. Default: 1e-05.
        param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter
            attribute. If a bool type, only False is supported, which means there is no weight parameter.
            Default: None, the default weight parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter
            attribute. If a bool type, only False is supported, which means there is no bias parameter.
            Default: None, the default bias parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        act(str, optional): Activation to be applied to the output of group normalization.
        data_layout(str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, *]`.
        name (str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A Tensor has same data type and data format with `input`.

    Examples:
       .. code-block:: python

            import paddle
            paddle.enable_static()

            data = paddle.static.data(name='data', shape=[2, 8, 32, 32], dtype='float32')
            x = paddle.static.nn.group_norm(input=data, groups=4)
            print(x.shape) # [2, 8, 32, 32]
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'group_norm'
    )
    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if len(input_shape) < 2:
        raise ValueError(
            f"The dimensions of Op(static.nn.group_norm)'s input should be more than 1. But received {len(input_shape)}"
        )
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(static.nn.group_norm) got wrong value: received "
            + data_layout
            + " but only NCHW or NHWC supported."
        )
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout,
        },
    )

    return helper.append_activation(group_norm_out)


744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
def conv2d(
    input,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format="NCHW",
):
    r"""
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
            of input is float16 or float32 or float64.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple): The filter size. If filter_size
            is a tuple, it must contain two integers, (filter_size_height,
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
        stride (int|tuple, optional): The stride size. It means the stride in convolution.
            If stride is a tuple, it must contain two integers, (stride_height, stride_width).
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
        dilation (int|tuple, optional): The dilation size. It means the spacing between the kernel
            points. If dilation is a tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
            Default: dilation = 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None
        name(str|None, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
           None by default.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.

    Returns:
        A Tensor representing the conv2d, whose data type is the
        same with input. If act is None, the tensor storing the convolution
        result, and if act is not None, the tensor storing convolution
        and non-linearity activation result.

    Examples:
        .. code-block:: python

          import paddle
          paddle.enable_static()

          data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          conv2d = paddle.static.nn.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
          print(conv2d.shape) # [-1, 2, 30, 30]
    """

    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'conv2d'
    )
    if len(input.shape) != 4:
        raise ValueError(
            "Input size should be 4, "
            "but received {}".format(len(input.shape))
        )
    num_channels = input.shape[1]
    if not isinstance(use_cudnn, bool):
        raise ValueError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s. " % str(use_cudnn)
        )

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format)
        )

    channel_last = data_format == "NHWC"
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels))
        )
    assert param_attr is not False, "param_attr should not be False here."

    if groups is None:
        num_filter_channels = num_channels
    elif groups <= 0:
        raise ValueError(
            "the groups of input must be greater than 0, "
            "but received the groups of input is {}".format(groups)
        )
    else:
        if num_channels % groups != 0:
            raise ValueError(
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
                ", the groups is {}".format(num_channels, input.shape, groups)
            )
        num_filter_channels = num_channels // groups

    l_type = 'conv2d'
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and not use_cudnn
    ):
        l_type = 'depthwise_conv2d'

    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and core.is_compiled_with_rocm()
    ):
        l_type = 'depthwise_conv2d'

    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
    if core.is_compiled_with_npu():
        if num_channels == groups and num_channels == num_filters:
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding)
                    )
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding)
                    )
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0]

    padding = _update_padding(padding, data_format)

    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        if filter_elem_num <= 0:
            raise ValueError(
                "Invalid filter number, excepted number is larger than 0, but"
                " received {}, please check the input shape and "
                "filter size.".format(filter_elem_num)
            )
        std = (2.0 / filter_elem_num) ** 0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer(),
    )

    pre_bias = helper.create_variable_for_type_inference(dtype)

    if (
        core.is_compiled_with_cuda()
        and paddle.fluid.get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
        use_cudnn = False

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
        },
    )

    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)

    return helper.append_activation(pre_act)


1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
def conv3d(
    input,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format="NCDHW",
):
    r"""

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

1092
        Out = \sigma (W \ast X + b)
1093 1094 1095 1096 1097

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
1098
    * :math:`\ast`: Convolution operation.
1099
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
1100
    * :math:`\sigma`: Activation function.
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

1118 1119 1120
            D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\
            H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\
            W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

    Args:
        input (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
            type of input is float16 or float32 or float64.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_depth, filter_size_height,
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size.
        stride (int|tuple): The stride size. It means the stride in convolution. If stride is a
            tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
        dilation (int|tuple): The dilation size. It means the spacing between the kernel points.
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
            Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
           None by default.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.

    Returns:
1176
        A Tensor representing the conv3d, whose data type is
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
        the same with input. If act is None, the tensor variable storing the
        convolution result, and if act is not None, the tensor variable storing
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.enable_static()
          data = paddle.static.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
          param_attr = paddle.framework.ParamAttr(name='conv3d.weight', initializer=paddle.nn.initializer.XavierNormal(), learning_rate=0.001)
          res = paddle.static.nn.conv3d(input=data, num_filters=2, filter_size=3, act="relu", param_attr=param_attr)
          place = paddle.CPUPlace()
          exe = paddle.static.Executor(place)
          exe.run(paddle.static.default_startup_program())
          x = np.random.rand(1, 3, 12, 32, 32).astype("float32")
          output = exe.run(feed={"data": x}, fetch_list=[res])
          print(output)
    """

    l_type = 'conv3d'
    assert param_attr is not False, "param_attr should not be False here."
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    if not isinstance(use_cudnn, bool):
        raise ValueError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s. " % str(use_cudnn)
        )

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format)
        )

    channel_last = data_format == "NDHWC"
    if len(input.shape) != 5:
        raise ValueError(
            "Input should be 5D tensor, but received input with the shape of {}".format(
                input.shape
            )
        )
    num_channels = input.shape[4] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels))
        )

    if groups is None:
        num_filter_channels = num_channels
    elif groups <= 0:
        raise ValueError(
            "the groups of conv3d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
    else:
        if num_channels % groups != 0:
            raise ValueError(
                "The number of input channels must be divisible by Attr(groups). "
                "Received: number of channels(%s), groups(%s)."
                % (str(num_channels), str(groups))
            )
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding)
                    )
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding)
                    )
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0]

    padding = _update_padding(padding, data_format)

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = (
            filter_size[0] * filter_size[1] * filter_size[2] * num_channels
        )
        if filter_elem_num <= 0:
            raise ValueError(
                "Invalid filter number, excepted number is larger than 0, but"
                " received {}, please check the input shape and "
                "filter size.".format(filter_elem_num)
            )

        std = (2.0 / filter_elem_num) ** 0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer(),
    )

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
        },
    )

    if data_format == 'NCDHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)

    return helper.append_activation(pre_act)


1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
def conv2d_transpose(
    input,
    num_filters,
    output_size=None,
    filter_size=None,
    padding=0,
    stride=1,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format='NCHW',
):
    r"""

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

1390
        Out = \sigma (W \ast X + b)
1391 1392 1393 1394 1395

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
1396
    * :math:`\ast`: Convolution operation.
1397
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
1398
    * :math:`\sigma`: Activation function.
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

L
LoneRanger 已提交
1417 1418
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\
1419
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\
1420 1421
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

L
LoneRanger 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
        If `padding` = `"SAME"`:

        .. math::
            H^\prime_{out} &= \frac{(H_{in} + stride[0] - 1)}{stride[0]} \\
            W^\prime_{out} &= \frac{(H_{in} + stride[1] - 1)}{stride[1]}

        If `padding` = `"VALID"`:

        .. math::
            H^\prime_{out} &= (H_{in} - 1) * strides[0] + dilations[0] * (H_f - 1) + 1 \\
            W^\prime_{out} &= (W_{in} − 1) * strides[1] + dilations[1] * (W_f − 1) + 1

        If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
        else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
        and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
        between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`,

        Since transposed convolution can be treated as the inverse of convolution, and according to the input-output formula for convolution,
        different sized input feature layers may correspond to the same sized output feature layer,
        the size of the output feature layer for a fixed sized input feature layer is not unique to transposed convolution

        If `output_size` is specified, `conv2d_transpose` can compute the kernel size automatically.
1444 1445

    Args:
L
LoneRanger 已提交
1446 1447 1448
        input(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format where N is the batch_size,
            C is the input_channels, H is the input_height and W is the input_width.
            Its data type is float32 or float64.
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_height, image_width). None if use
            filter_size, padding, and stride to calculate output_size.
            If output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None. output_size and filter_size
            should not be None at the same time.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if
            use output size to calculate filter_size. Default: None. filter_size and
            output_size should not be None at the same time.
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If `padding` is a tuple or list,
L
LoneRanger 已提交
1465 1466
            it could be in three forms:
            (1) Contains 4 binary groups: when `data_format` is `"NCHW"`, `padding` can be in the form
1467 1468 1469
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
L
LoneRanger 已提交
1470 1471 1472 1473 1474 1475
            (2) Contains 4 integer values:`[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`
            (3) Contains 2 integer values:`[pad_height, pad_width]`, in this case, `padding_height_top = padding_height_bottom = padding_height`,
            `padding_width_left = padding_width_right = padding_width`. If an integer, `padding_height = padding_width = padding`. Default: padding = 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain two integers, (stride_height, stride_width).
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width).
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
L
LoneRanger 已提交
1489 1490 1491 1492
        bias_attr (ParamAttr|bool, optional): Specifies the object for the bias parameter attribute.
            The default value is None, which means that the default bias parameter attribute is used.
            For detailed information, please refer to :ref:`paramattr`.
            The default bias initialisation for the conv2d_transpose operator is 0.0.
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
           None by default.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.

    Returns:
        A Tensor representing the conv2d_transpose, whose
        data type is the same with input and shape is (num_batches, channels, out_h,
        out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor
        storing the transposed convolution result, and if act is not None, the
        tensor storing transposed convolution and non-linearity activation
        result.

    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
       .. code-block:: python

          import paddle
          paddle.enable_static()

          data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          conv2d_transpose = paddle.static.nn.conv2d_transpose(input=data, num_filters=2, filter_size=3)
          print(conv2d_transpose.shape) # [-1, 2, 34, 34]
    """
    assert (
        param_attr is not False
    ), "param_attr should not be False in conv2d_transpose."
    if len(input.shape) != 4:
        raise ValueError(
            "Input size should be 4, "
            "but received {}".format(len(input.shape))
        )

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(paddle.static.nn.layers.conv2d_transpose) got wrong value: received "
            + data_format
            + " but only NCHW or NHWC supported."
        )

    input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1]
    op_type = 'conv2d_transpose'
    if (
        input_channel == groups
        and num_filters == input_channel
        and not use_cudnn
    ):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
    if not isinstance(input, Variable):
1563
        raise TypeError("Input of conv2d_transpose must be Tensor")
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding)
                    )
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding)
                    )
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')
            padding = [padding[0], padding[0], padding[1], padding[1]]
        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0]

    padding = _update_padding(padding, data_format)

    if output_size is None:
        output_size = []
    elif isinstance(output_size, (list, tuple)):
        if utils._contain_var(output_size):
            output_size = utils._convert_to_tensor_list(output_size)
        else:
            output_size = utils.convert_to_list(output_size, 2, 'output_size')
    elif isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    elif isinstance(output_size, Variable):
        check_dtype(
            output_size.dtype,
            'output_size',
            ['int32', 'int64'],
            'conv2d_transpose',
        )
        if len(output_size.shape) == 1 and (
            output_size.shape[0] == 1 or output_size.shape[0] == 2
        ):
            if output_size.shape[0] == 1:
                output_size = [output_size, output_size]
        else:
            raise ValueError("output_size must contain one or two integers.")
    else:
        raise ValueError(
            "output_size should be int, list[int] or tuple[int] or Tensor"
        )

    if filter_size is None:
        if output_size is []:
            raise ValueError("output_size must be set when filter_size is None")
        if not _non_static_mode():
            if isinstance(output_size, Variable) or utils._contain_var(
                output_size
            ):
                raise ValueError(
1653
                    "filter_size should not be None when output_size is Tensor or contain Tensor in static graph mode."
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
                )
        else:
            output_size = utils.convert_shape_to_list(output_size)
            if len(output_size) == 1:
                output_size = utils.convert_to_list(
                    output_size[0], 2, 'output_size'
                )

        h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1]
        w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2]

        filter_size_h = (
            output_size[0]
            - (h_in - 1) * stride[0]
            + padding[0]
            + padding[1]
            - 1
        ) // dilation[0] + 1
        filter_size_w = (
            output_size[1]
            - (w_in - 1) * stride[1]
            + padding[2]
            + padding[3]
            - 1
        ) // dilation[1] + 1
        filter_size = [filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(
            filter_size, 2, 'conv2d_transpose.filter_size'
        )

    if len(padding) == 4 and utils._is_symmetric_padding(padding, 2):
        padding = [padding[0], padding[2]]

    if groups is None:
        groups = 1
    elif groups <= 0:
        raise ValueError(
            "the groups of input must be greater than 0, "
            "but received the groups of input is {}".format(groups)
        )

    filter_shape = [input_channel, num_filters // groups] + filter_size

    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr
    )

    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'Input': [input], 'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format,
        },
    )

    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
    out = helper.append_activation(pre_act)
    return out


def conv3d_transpose(
    input,
    num_filters,
    output_size=None,
    filter_size=None,
    padding=0,
    stride=1,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format='NCDHW',
):
    r"""

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \ast X + b)

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

1788 1789 1790 1791 1792
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\
1793 1794
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

L
LoneRanger 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
    If `padding` = `"SAME"`:

        .. math::
            D^\prime_{out} &= \frac{(D_{in} + stride[0] - 1)}{stride[0]} \\
            H^\prime_{out} &= \frac{(H_{in} + stride[1] - 1)}{stride[1]} \\
            W^\prime_{out} &= \frac{(H_{in} + stride[2] - 1)}{stride[2]}

    If `padding` = `"VALID"`:

    .. math::
        D^\prime_{out} &= (D_{in} - 1) * strides[0] + dilations[0] * (D_f - 1) + 1 \\
        H^\prime_{out} &= (H_{in} - 1) * strides[1] + dilations[1] * (H_f - 1) + 1 \\
        W^\prime_{out} &= (W_{in} − 1) * strides[2] + dilations[2] * (W_f − 1) + 1

    If `output_size` is None, :math:`D_{out} = D^\prime_{out}, :math:`H_{out} = \
    H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the specified `output_size_depth` (the depth of the ouput feature layer) :math:`D_{out}`
    must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`(not including :math:`D^\prime_{out} + strides[0]`),
    the specified `output_size_height` (the height of the ouput feature layer) :math:`H_{out}` must between :math:`H^\prime_{out}`
    and :math:`H^\prime_{out} + strides[1]`(not including :math:`H^\prime_{out} + strides[1]`),
    and the the specified `output_size_width` (the width of the ouput feature layer) :math:`W_{out}` must
    between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`(not including :math:`W^\prime_{out} + strides[2]`).

    Since transposed convolution can be treated as the inverse of convolution,
    and since different sized input feature layers may correspond to the same sized output feature layer according to the input-output formula for convolution,
    the size of the output feature layer for a fixed sized input feature layer is not unique to transposed convolution.

    If `output_size` is specified, `conv3d_transpose` can compute the kernel size automatically.
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

    Args:
        input(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
            of input is float32 or float64.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple, optional): The output image size. If output size is a
            tuple, it must contain three integers, (image_depth, image_height, image_width). This
            parameter only works when filter_size is None. If output_size and filter_size are
            specified at the same time, They should follow the formula above. Default: None.
            Output_size and filter_size should not be None at the same time.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_depth, filter_size_height,
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size. None if use output size to
            calculate filter_size. Default: None. filter_size and output_size should not be
            None at the same time.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively
            adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
            either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
            is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
            Default: stride = 1.
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
            Default: dilation = 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
           None by default.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.

    Returns:
1885
        A Tensor representing the conv3d_transpose, whose data
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
        type is the same with input and shape is (num_batches, channels, out_d, out_h,
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
        variable storing the transposed convolution result, and if act is not None, the tensor
        variable storing transposed convolution and non-linearity activation result.

    Examples:
       .. code-block:: python

          import paddle
          import numpy as np

          paddle.enable_static()
          data = paddle.static.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
          param_attr = paddle.framework.ParamAttr(name='conv3d.weight', initializer=paddle.nn.initializer.XavierNormal(), learning_rate=0.001)
          res = paddle.static.nn.conv3d_transpose(input=data, num_filters=2, filter_size=3, act="relu", param_attr=param_attr)
          place = paddle.CPUPlace()
          exe = paddle.static.Executor(place)
          exe.run(paddle.static.default_startup_program())
          x = np.random.rand(1, 3, 12, 32, 32).astype("float32")
          output = exe.run(feed={"data": x}, fetch_list=[res])
          print(output)
    """
    assert (
        param_attr is not False
    ), "param_attr should not be False in conv3d_transpose."
    if data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Param(data_format) of Op(paddle.static.nn.conv3d_transpose) got wrong value: received "
            + data_format
            + " but only NCDHW or NDHWC supported."
        )

    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
    if not isinstance(input, Variable):
1921
        raise TypeError("Input of conv3d_transpose must be Tensor")
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
    if len(input.shape) != 5:
        raise ValueError(
            "Input should be 5D tensor, but received input with the shape of {}".format(
                input.shape
            )
        )
    input_channel = (
        input.shape[1] if data_format == 'NCDHW' else input.shape[-1]
    )

    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding)
                    )
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding)
                    )
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')

        else:
            padding = utils.convert_to_list(padding, 3, 'padding')
            padding = [
                padding[0],
                padding[0],
                padding[1],
                padding[1],
                padding[2],
                padding[2],
            ]
        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0, 0, 0]

    padding = _update_padding(padding, data_format)

    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size, output_size]

        d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
        h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
        w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]

        filter_size_d = (
            output_size[0]
            - (d_in - 1) * stride[0]
            + padding[0]
            + padding[1]
            - 1
        ) // dilation[0] + 1
        filter_size_h = (
            output_size[1]
            - (h_in - 1) * stride[1]
            + padding[2]
            + padding[3]
            - 1
        ) // dilation[1] + 1
        filter_size_w = (
            output_size[2]
            - (w_in - 1) * stride[2]
            + padding[4]
            + padding[5]
            - 1
        ) // dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(
            filter_size, 3, 'conv3d_transpose.filter_size'
        )

    if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
        padding = [padding[0], padding[2], padding[4]]

    if output_size is None:
        output_size = []
    elif isinstance(output_size, (list, tuple, int)):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
        raise ValueError("output_size should be int, list[int] or tuple[int]")

    groups = 1 if groups is None else groups
    if groups <= 0:
        raise ValueError(
            "the groups of conv3d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
    if num_filters % groups != 0:
        raise ValueError(
            "Attr(num_filters) must be divisible by groups,"
            "Received: Attr(num_filters) is {}, the groups is {}".format(
                num_filters, groups
            )
        )

    filter_shape = [input_channel, num_filters // groups] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr
    )

    if data_format == 'NCDHW':
        data_format = 'NCHW'
    if data_format == 'NDHWC':
        data_format = 'NHWC'

    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=l_type,
        inputs={'Input': [input], 'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format,
        },
    )

    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
    out = helper.append_activation(pre_act)
    return out


2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
def deformable_conv(
    input,
    offset,
    mask,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=None,
    deformable_groups=None,
    im2col_step=None,
    param_attr=None,
    bias_attr=None,
    modulated=True,
    name=None,
):
    r"""

    **Deformable Convolution op**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:


    Deformable Convolution v2:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}

    Deformable Convolution v1:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}

    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location,
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.

    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

2152 2153
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
2154 2155 2156 2157 2158 2159

    Args:
        input (Tensor): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
        offset (Tensor): The input coordinate offset of deformable convolution layer.
            A Tensor with type float32, float64.
2160
        Mask (Tensor, Optional): The input mask of deformable convolution layer.
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation;
            The total batch size should be devisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
        Tensor: The tensor variable storing the deformable convolution \
                  result. A Tensor with type float32, float64.
    Examples:
        .. code-block:: python

          #deformable conv v2:

              import paddle
              paddle.enable_static()

              C_in, H_in, W_in = 3, 32, 32
              filter_size, deformable_groups = 3, 1
              data = paddle.static.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
              offset = paddle.static.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
              mask = paddle.static.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
              out = paddle.static.layers.common.deformable_conv(input=data, offset=offset, mask=mask,
                                                 num_filters=2, filter_size=filter_size, padding=1, modulated=True)

              #deformable conv v1:

              import paddle
              C_in, H_in, W_in = 3, 32, 32
              filter_size, deformable_groups = 3, 1
              data = paddle.static.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
              offset = paddle.static.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
              out = paddle.static.layers.common.deformable_conv(input=data, offset=offset, mask=None,
                                                 num_filters=2, filter_size=filter_size, padding=1, modulated=False)
    """

    check_variable_and_dtype(
        input, "input", ['float32', 'float64'], 'deformable_conv'
    )
    check_variable_and_dtype(
        offset, "offset", ['float32', 'float64'], 'deformable_conv'
    )
    check_type(
        mask, 'mask', (paddle.static.Variable, type(None)), 'deformable_conv'
    )

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, paddle.static.Variable):
2251
        raise TypeError("Input of deformable_conv must be Tensor")
2252
    if not isinstance(offset, paddle.static.Variable):
2253
        raise TypeError("Input Offset of deformable_conv must be Tensor")
2254 2255 2256 2257

    if groups is None:
        num_filter_channels = num_channels
    else:
2258 2259
        if groups == 0:
            raise ValueError("groups should not be 0.")
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        if filter_elem_num <= 0:
            raise ValueError(
                "Invalid filter number, excepted number is larger than 0, but"
                " received {}, please check the input shape and "
                "filter size.".format(filter_elem_num)
            )
        std = (2.0 / filter_elem_num) ** 0.5
        return paddle.nn.initializer.normal.NormalInitializer(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer(),
    )

    pre_bias = helper.create_variable_for_type_inference(dtype)

    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            },
        )

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            },
        )

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output


2335
@static_only
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
def deform_conv2d(
    x,
    offset,
    mask,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    deformable_groups=1,
    im2col_step=1,
    weight_attr=None,
    bias_attr=None,
    name=None,
):
2352
    r"""
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:


    Deformable Convolution v2:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}

    Deformable Convolution v1:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}

    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location,
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.

    Example:
        - Input:

          X shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

2393 2394
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
2395 2396 2397 2398 2399 2400

    Args:
        x (Tensor): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
        offset (Tensor): The input coordinate offset of deformable convolution layer.
            A Tensor with type float32, float64.
2401
        mask (Tensor): The input mask of deformable convolution layer.
2402 2403 2404 2405
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
2406
        filter_size (int|list|tuple): The filter size. If filter_size is a list/tuple,
2407 2408
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2409
        stride (int|list|tuple, Optional): The stride size. If stride is a list/tuple, it must
2410 2411
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
2412
        padding (int|list|tuple, Optional): The padding size. If padding is a list/tuple, it must
2413 2414
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
2415
        dilation (int|list|tuple, Optional): The dilation size. If dilation is a list/tuple, it must
2416 2417
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
2418
        groups (int, Optional): The groups number of the deformable conv layer. According to
2419 2420 2421 2422
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
2423
        deformable_groups (int, Optional): The number of deformable group partitions.
2424
            Default: deformable_groups = 1.
2425
        im2col_step (int, Optional): Maximum number of images per im2col computation;
2426 2427 2428 2429 2430 2431 2432 2433 2434
            The total batch size should be devisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 1.
        weight_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as weight_attr.
            If the Initializer of the weight_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the
2435
            :math:`std` is :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
2436 2437 2438 2439 2440 2441 2442
        bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
2443

2444
    Returns:
2445
        Tensor: The tensor storing the deformable convolution result. A Tensor with type float32, float64.
2446

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
    Examples:
        .. code-block:: python

          #deformable conv v2:

          import paddle
          paddle.enable_static()

          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
          data = paddle.static.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = paddle.static.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
          mask = paddle.static.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
          out = paddle.static.nn.deform_conv2d(x=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=filter_size, padding=1)

          #deformable conv v1:

          import paddle
          paddle.enable_static()

          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
          data = paddle.static.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = paddle.static.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
          out = paddle.static.nn.deform_conv2d(x=data, offset=offset, mask=None,
                                             num_filters=2, filter_size=filter_size, padding=1)
    """

    if mask is None:
2477
        return deformable_conv(
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
            input=x,
            offset=offset,
            mask=mask,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            deformable_groups=deformable_groups,
            im2col_step=im2col_step,
            param_attr=weight_attr,
            bias_attr=bias_attr,
            modulated=False,
2492 2493
            name=name,
        )
2494
    else:
2495
        return deformable_conv(
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
            input=x,
            offset=offset,
            mask=mask,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            deformable_groups=deformable_groups,
            im2col_step=im2col_step,
            param_attr=weight_attr,
            bias_attr=bias_attr,
            modulated=True,
2510 2511
            name=name,
        )
2512 2513


2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
def bilinear_tensor_product(
    x, y, size, act=None, name=None, param_attr=None, bias_attr=None
):
    r"""
    This layer performs bilinear tensor product on two inputs.

    .. math::

       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
2532
        x (Tensor): 2-D input tensor with shape [batch_size, M]. Data type
2533
            is float32 or float64.
2534
        y (Tensor): 2-D input tensor with shape [batch_size, N]. Data type
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
            should be same as **x**.
        size (int): The dimension of this layer.
        act (str|None): Activation to be applied to the output of this layer. Default None.
        name(str|None): For detailed information, please refer to
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr|None): To specify the bias parameter attribute.
            Default: None, which means the default bias parameter property is
            used. See usage for details in :ref:`api_fluid_ParamAttr` .

    Returns:
        Tensor, A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data("t1", shape=[-1, 5], dtype="float32")
            y = paddle.static.data("t2", shape=[-1, 4], dtype="float32")
            tensor = paddle.static.nn.bilinear_tensor_product(x, y, size=1000)

    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
    dtype = helper.input_dtype('x')

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False
    )
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True
        )
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
    )

    # add activation
    return helper.append_activation(out)


2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
def batch_norm(
    input,
    act=None,
    is_test=False,
    momentum=0.9,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    data_layout='NCHW',
    in_place=False,
    name=None,
    moving_mean_name=None,
    moving_variance_name=None,
    do_model_average_for_mean_and_var=True,
    use_global_stats=False,
):
    r"""

    **Batch Normalization Layer**

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

    :math:input is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum)


    moving_mean is global mean and moving_var is global variance.

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use
        sync_batch_norm automatically.
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.

    Args:
        input(Tensor): The rank of input Tensor can be 2, 3, 4, 5. The data type
            is float16 or float32 or float64.
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float|Tensor, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Tensor with
            shape [1] and data type as float32. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
         will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
         If the Initializer of the param_attr is not set, the parameter is initialized
         with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
         will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
         If the Initializer of the bias_attr is not set, the bias is initialized zero.
         Default: None.
        data_layout (str, optional): Specify the data format of the input, and the data format of the output
             will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
             The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_height, input_width]`.
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
            will save global mean with the string.
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
            will save global variance with the string.
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.

    Returns:
        A Tensor which is the result after applying batch normalization on the input,
        has same shape and data type with input.

    Examples:

        .. code-block:: python

            import paddle

            paddle.enable_static()
            x = paddle.static.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = paddle.static.nn.fc(x=x, size=200)
            print(hidden1.shape)
            # [3, 200]
            hidden2 = paddle.static.nn.batch_norm(input=hidden1)
            print(hidden2.shape)
            # [3, 200]
    """
    assert (
        bias_attr is not False
    ), "bias_attr should not be False in batch_norm."
    helper = LayerHelper('batch_norm', **locals())

    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'batch_norm'
    )
    dtype = helper.input_dtype()

    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=paddle.fluid.initializer.Constant(1.0),
    )
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
    )

    mean = helper.create_parameter(
        attr=paddle.ParamAttr(
            name=moving_mean_name,
            initializer=paddle.fluid.initializer.Constant(0.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var,
        ),
        shape=param_shape,
        dtype=dtype,
    )
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=paddle.ParamAttr(
            name=moving_variance_name,
            initializer=paddle.fluid.initializer.Constant(1.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var,
        ),
        shape=param_shape,
        dtype=dtype,
    )
    variance.stop_gradient = True

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance_out share the same memory
    variance_out = variance

    if _non_static_mode():
        inputs_has_MomemtumTensor = False
        attrs_has_momentum = False
        tmp_tensor_type = core.eager.Tensor
        if isinstance(momentum, tmp_tensor_type):
            inputs_has_MomemtumTensor = True
        else:
            attrs_has_momentum = True

        attrs_ = ()
        if attrs_has_momentum:
            attrs_ = (
                'momentum',
                momentum,
                'epsilon',
                epsilon,
                'is_test',
                is_test,
                'data_layout',
                data_layout,
                'use_mkldnn',
                False,
                'fuse_with_relu',
                False,
                'use_global_stats',
                use_global_stats,
            )
        else:
            attrs_ = (
                'epsilon',
                epsilon,
                'is_test',
                is_test,
                'data_layout',
                data_layout,
                'use_mkldnn',
                False,
                'fuse_with_relu',
                False,
                'use_global_stats',
                use_global_stats,
            )
        if inputs_has_MomemtumTensor:
            batch_norm_out, _, _, _, _, _ = paddle._legacy_C_ops.batch_norm(
                input,
                scale,
                bias,
                mean,
                variance,
                momentum,
                mean_out,
                variance_out,
                *attrs_,
            )
        else:
            batch_norm_out, _, _, _, _, _ = paddle._legacy_C_ops.batch_norm(
                input,
                scale,
                bias,
                mean,
                variance,
                None,
                mean_out,
                variance_out,
                *attrs_,
            )

        return paddle.fluid.dygraph_utils._append_activation_in_dygraph(
            batch_norm_out, act=act, use_mkldnn=False
        )

    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    reserve_space = None
    if not is_test:
        reserve_space = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype(), stop_gradient=True
        )

    batch_norm_out = (
        input if in_place else helper.create_variable_for_type_inference(dtype)
    )

    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
        "Variance": variance,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats,
    }
    if isinstance(momentum, paddle.static.Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance,
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

    helper.append_op(
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
    )

    return helper.append_activation(batch_norm_out)


2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
@static_only
def prelu(x, mode, param_attr=None, data_format="NCHW", name=None):
    r"""

    prelu activation.

    .. math::
        prelu(x) = max(0, x) + \alpha * min(0, x)

    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

    Parameters:
        x (Tensor): The input Tensor or LoDTensor with data type float32.
        mode (str): The mode for weight sharing.
        param_attr (ParamAttr|None, optional): The parameter attribute for the learnable \
            weight (alpha), it can be create by ParamAttr. None by default. \
            For detailed information, please refer to :ref:`api_paddle_ParamAttr`.
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
        name (str, optional): Name for the operation (optional, default is None). \
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A tensor with the same shape and data type as x.

    Examples:

        .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name="x", shape=[None,5,10,10], dtype="float32")
            mode = 'channel'
            output = paddle.static.nn.prelu(
                x,mode,param_attr=paddle.ParamAttr(name='alpha'))

    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')

    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')

    alpha_shape = [1]
    if mode == 'channel':

        true_data_format = [
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

        assert (
            len(x.shape) >= 2
        ), "The size of input shape should be equal or larger than 2 in prelu() when mode is 'channel'"
        # NOTE(zhiqiu): The alpha_shape should be [1, channel] + [1] * len(x.shape[2:]).
        # To be consistent with Prelu, it is simplified.
        # NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
        # NOTE(GuoxiaWang): support NHWC data format
        if data_format == 'NHWC':
            alpha_shape = [1, 1, 1, x.shape[-1]]
        else:
            alpha_shape = [1, x.shape[1], 1, 1]

    elif mode == 'element':
        assert (
            len(x.shape) >= 1
        ), "The size of input shape should be equal or larger than 1 in prelu() when mode is 'element'"
        alpha_shape = [1] + list(x.shape)[1:]
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=helper.param_attr,
        shape=alpha_shape,
        dtype=dtype,
        is_bias=False,
        default_initializer=paddle.nn.initializer.Constant(0.25),
    )

    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x, 'Alpha': alpha},
        attrs={"mode": mode, "data_format": data_format},
        outputs={"Out": out},
    )
    return out


3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
class PyFuncRegistry:
    _register_funcs = []

    def __init__(self, func):
        if func is None or not callable(func):
            raise TypeError('func must be a Python function')

        self._func = func
        # find named args using reflection
        args = inspect.getfullargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
        '''
        Why record self here?
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
           to find the registered function corresponding
           to :code:`idx`.
        2. For increasing reference count of self.
           It seems that to release Python object
           whose reference count is 1 would cause
           segmentation fault error in C++ side.
           May be lack of Python GC in C++ side?
        '''
        PyFuncRegistry._register_funcs.append(self)

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)

        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret,)

        ret = []
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
                continue

            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)

            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)

        return tuple(ret)


@static_only
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    This is used to register customized Python OP to Paddle. The design
    principe of py_func is that Tensor and numpy array can be converted to each
    other easily. So you can use Python and numpy API to register a python OP.
    The forward function of the registered OP is ``func`` and the backward function
    of that is ``backward_func``. Paddle will call ``func`` at forward runtime and
    call ``backward_func`` at backward runtime(if ``backward_func`` is not  None).
    ``x`` is the input of ``func``, whose type must be Tensor; ``out`` is
    the output of ``func``, whose type can be either Tensor or numpy array.
    The input of the backward function ``backward_func`` is ``x``, ``out`` and
    the gradient of ``out``. If ``out`` have no gradient, the relevant input of
    ``backward_func`` is None. If ``x`` do not have a gradient, the user should
    return None in ``backward_func``.
    The data type and shape of ``out`` should also be set correctly before this
    API is called, and the data type and shape of the gradient of ``out`` and
    ``x`` will be inferred automatically.
    This API can also be used to debug the neural network by setting the ``func``
    as a function that only print variables.
L
LoneRanger 已提交
3107

3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
    Args:
        func (callable): The forward function of the registered OP. When the network
            is running, the forward output ``out`` will be calculated according to this
            function and the forward input ``x``. In ``func`` , it's suggested that we
            actively convert Tensor into a numpy array, so that we can use Python and
            numpy API arbitrarily. If not, some operations of numpy may not be compatible.
        x (Tensor|tuple(Tensor)|list[Tensor]): The input of the forward function ``func``.
            It can be Tensor|tuple(Tensor)|list[Tensor]. In addition, Multiple Tensor
            should be passed in the form of tuple(Tensor) or list[Tensor].
        out (T|tuple(T)|list[T]): The output of the forward function ``func``, it can be
            T|tuple(T)|list[T], where T can be either Tensor or numpy array. Since Paddle
            cannot automatically infer the shape and type of ``out``, you must create
            ``out`` in advance.
        backward_func (callable, optional): The backward function of the registered OP.
            Its default value is None, which means there is no reverse calculation. If
            it is not None, ``backward_func`` is called to calculate the gradient of
            ``x`` when the network is at backward runtime.
        skip_vars_in_backward_input (Tensor, optional): It's used to limit the input
            list of ``backward_func``, and it can be Tensor|tuple(Tensor)|list[Tensor].
            It must belong to either ``x`` or ``out``. The default  value is None, which means
            that no tensors need to be removed from ``x`` and ``out``. If it is not None,
            these tensors will not be the input of ``backward_func``. This parameter is only
            useful when ``backward_func`` is not None.
L
LoneRanger 已提交
3131

3132
    Returns:
L
LoneRanger 已提交
3133 3134
        Tensor|tuple(Tensor)|list[Tensor], The output ``out`` of the forward function ``func``.

3135
    Examples:
L
LoneRanger 已提交
3136

3137
        .. code-block:: python
L
LoneRanger 已提交
3138 3139
            :name: code-example1

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
            # example 1:
            import paddle
            import numpy as np
            paddle.enable_static()
            # Creates a forward function, Tensor can be input directly without
            # being converted into numpy array.
            def tanh(x):
                return np.tanh(x)
            # Skip x in backward function and return the gradient of x
            # Tensor must be actively converted to numpy array, otherwise,
            # operations such as +/- can't be used.
            def tanh_grad(y, dy):
                return np.array(dy) * (1 - np.square(np.array(y)))
            # Creates a forward function for debugging running networks(print value)
            def debug_func(x):
                print(x)
            def create_tmp_var(name, dtype, shape):
                return paddle.static.default_main_program().current_block().create_var(
                    name=name, dtype=dtype, shape=shape)
            def simple_net(img, label):
                hidden = img
                for idx in range(4):
                    hidden = paddle.static.nn.fc(hidden, size=200)
                    new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
                        dtype=hidden.dtype, shape=hidden.shape)
                    # User-defined forward and backward
                    hidden = paddle.static.py_func(func=tanh, x=hidden,
                        out=new_hidden, backward_func=tanh_grad,
                        skip_vars_in_backward_input=hidden)
                    # User-defined debug functions that print out the input Tensor
                    paddle.static.py_func(func=debug_func, x=hidden, out=None)
                prediction = paddle.static.nn.fc(hidden, size=10, activation='softmax')
                ce_loss = paddle.nn.loss.CrossEntropyLoss()
                return ce_loss(prediction, label)
            x = paddle.static.data(name='x', shape=[1,4], dtype='float32')
            y = paddle.static.data(name='y', shape=[1], dtype='int64')
            res = simple_net(x, y)
            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            input1 = np.random.random(size=[1,4]).astype('float32')
            input2 = np.random.randint(1, 10, size=[1], dtype='int64')
            out = exe.run(paddle.static.default_main_program(),
                          feed={'x':input1, 'y':input2},
                          fetch_list=[res.name])
            print(out)
L
LoneRanger 已提交
3185

3186
        .. code-block:: python
L
LoneRanger 已提交
3187 3188
            :name: code-example2

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
            # example 2:
            # This example shows how to turn Tensor into numpy array and
            # use numpy API to register an Python OP
            import paddle
            import numpy as np
            paddle.enable_static()
            def element_wise_add(x, y):
                # Tensor must be actively converted to numpy array, otherwise,
                # numpy.shape can't be used.
                x = np.array(x)
                y = np.array(y)
                if x.shape != y.shape:
                    raise AssertionError("the shape of inputs must be the same!")
                result = np.zeros(x.shape, dtype='int32')
                for i in range(len(x)):
                    for j in range(len(x[0])):
                        result[i][j] = x[i][j] + y[i][j]
                return result
            def create_tmp_var(name, dtype, shape):
                return paddle.static.default_main_program().current_block().create_var(
                            name=name, dtype=dtype, shape=shape)
            def py_func_demo():
                start_program = paddle.static.default_startup_program()
                main_program = paddle.static.default_main_program()
                # Input of the forward function
                x = paddle.static.data(name='x', shape=[2,3], dtype='int32')
                y = paddle.static.data(name='y', shape=[2,3], dtype='int32')
                # Output of the forward function, name/dtype/shape must be specified
                output = create_tmp_var('output','int32', [3,1])
3218
                # Multiple Tensor should be passed in the form of tuple(Tensor) or list[Tensor]
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
                paddle.static.py_func(func=element_wise_add, x=[x,y], out=output)
                exe=paddle.static.Executor(paddle.CPUPlace())
                exe.run(start_program)
                # Feed numpy array to main_program
                input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                out = exe.run(main_program,
                            feed={'x':input1, 'y':input2},
                            fetch_list=[output.name])
                print("{0} + {1} = {2}".format(input1, input2, out))
            py_func_demo()
            # Reference output:
            # [[5, 9, 9]   + [[7, 8, 4]  =  [array([[12, 17, 13]
            #  [7, 5, 2]]     [1, 3, 3]]            [8, 8, 5]], dtype=int32)]
    """
    helper = LayerHelper('py_func', **locals())
    check_type(x, 'X', (list, tuple, Variable, type(None)), 'py_func')
    if x is None:
        x = []
    elif isinstance(x, Variable):
        x = [x]
    elif isinstance(x, tuple):
        x = list(x)
    elif not isinstance(x, (list, tuple, Variable)):
3243
        raise TypeError('Input must be Tensor/list(Tensor)/tuple(Tensor)')
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
    check_type(out, 'Out', (list, tuple, Variable, type(None)), 'py_func')
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
        out_list = [out]
    elif isinstance(out, tuple):
        out_list = list(out)
    elif isinstance(out, list):
        out_list = out
    else:
3254
        raise TypeError('Output must be Tensor/list(Tensor)/tuple(Tensor)')
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278

    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = (
        PyFuncRegistry(backward_func).id if backward_func is not None else -1
    )

    for each_out in out_list:
        if len(each_out.shape) == 0:
            raise ValueError(
                'Output shapes of py_func should be provided by users manually'
            )

    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if v.name not in fwd_in_out:
                raise ValueError(
3279
                    'Tensor {} is not found in forward inputs and outputs'.format(
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
                        v.name
                    )
                )
            backward_skip_vars.add(v.name)

    helper.append_op(
        type='py_func',
        inputs={'X': x},
        outputs={'Out': out_list},
        attrs={
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars),
        },
    )
    return out


3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
@templatedoc()
def row_conv(input, future_context_size, param_attr=None, act=None):
    """
    :api_attr: Static Graph

    ${comment}

    Args:
        input (${x_type}): ${x_comment}.
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
        ${out_comment}.

    Examples:

      .. code-block:: python

        # for LodTensor inputs
        import paddle
        paddle.enable_static()
        x = paddle.static.data(name='x', shape=[9, 16],
                               dtype='float32', lod_level=1)
        out_x = paddle.static.nn.row_conv(input=x, future_context_size=2)
        # for Tensor inputs
        y = paddle.static.data(name='y', shape=[9, 4, 16], dtype='float32')
        out_y = paddle.static.nn.row_conv(input=y, future_context_size=2)
    """
    helper = LayerHelper('row_conv', **locals())
    check_variable_and_dtype(input, 'input', ['float32'], 'row_conv')
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[-1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype
    )
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input], 'Filter': [filter_param]},
        outputs={'Out': [out]},
    )
    return helper.append_activation(out)


@templatedoc()
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
    r"""
    :api_attr: Static Graph

    **Spectral Normalization Layer**

    This operation calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
    :attr:`power_iters` should be a positive integer, do following
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(Tensor): ${weight_comment}
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Tensor: A tensor of weight parameters after spectral normalization.
                  The data type and shape is same as input tensor.

    Examples:
       .. code-block:: python

            import paddle

            paddle.enable_static()
            weight = paddle.static.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
            x = paddle.static.nn.spectral_norm(weight=weight, dim=1, power_iters=2)
            print(x.shape) # [2, 8, 32, 32]
    """
    helper = LayerHelper('spectral_norm', **locals())
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'spectral_norm'
    )
    check_type(dim, 'dim', int, 'spectral_norm')
    check_type(power_iters, 'power_iters', int, 'spectral_norm')
    check_type(eps, 'eps', float, 'spectral_norm')
    dtype = weight.dtype

    # create intput and parameters
    input_shape = weight.shape
    assert weight.numel() > 0, "Any dimension of input cannot be equal to 0."
3421 3422 3423 3424 3425 3426

    if dim not in [0, 1]:
        raise ValueError(
            f"The input `dim` must be 0 (if weight in fc) or 1 (if weight in conv), but received dim={dim}"
        )

3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
    u.stop_gradient = True
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
    v.stop_gradient = True

    if paddle.framework.in_dygraph_mode():
        return paddle._C_ops.spectral_norm(weight, u, v, dim, power_iters, eps)

    inputs = {'Weight': weight}
    inputs['U'] = u
    inputs['V'] = v

    # create output
    out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="spectral_norm",
        inputs=inputs,
        outputs={
            "Out": out,
        },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        },
    )

    return out


3471 3472 3473
# For debug usage
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608


@templatedoc()
def layer_norm(
    input,
    scale=True,
    shift=True,
    begin_norm_axis=1,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
    r"""

    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    ..  math::

        \mu & = \frac{1}{H}\sum_{i=1}^{H} x_i

        \sigma & = \sqrt{\frac{1}{H}\sum_{i=1}^{H}{(x_i - \mu)^2} + \epsilon}

        y & = f(\frac{g}{\sigma}(x - \mu) + b)

    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.

    Args:
        input(Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        act(str, optional): Activation to be applied to the output of layer normalization.
                  Default: None.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .

    Examples:

        .. code-block:: python

            import paddle
            paddle.enable_static()
            x = paddle.static.data(name='x', shape=[8, 32, 32], dtype='float32')
            output = paddle.static.nn.layer_norm(input=x, begin_norm_axis=1)
            print(output.shape)  # [8, 32, 32]
    """
    assert (
        _non_static_mode() is not True
    ), "please use LayerNorm instead of layer_norm in dygraph mode!"
    helper = LayerHelper('layer_norm', **locals())
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'layer_norm'
    )
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        assert (
            param_attr is not False
        ), "param_attr should not be False when using scale."
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
        inputs['Scale'] = scale
    else:
        if param_attr:
            warnings.warn("param_attr is only available with scale is True.")
    if shift:
        assert (
            bias_attr is not False
        ), "bias_attr should not be False when using shift."
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
        inputs['Bias'] = bias
    else:
        if bias_attr:
            warnings.warn("bias_attr is only available with shift is True.")

    # create output
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    layer_norm_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
    )

    return helper.append_activation(layer_norm_out)