the_one_ps.py 56.0 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings

import os
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.framework import Program
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
from paddle.fluid.framework import Variable, Parameter
from .runtime_base import RuntimeBase
from ..base.private_helper_function import wait_server_ready

28 29
__all__ = []

T
tangwei12 已提交
30 31 32 33 34

def conv_indent(indent):
    return "".join([" "] * indent)


T
tangwei12 已提交
35
PSERVER_SAVE_SUFFIX = ".shard"
36 37


T
Thunderbrook 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51
def parse_table_class(varname, o_main_program):
    from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_distributed_sparse_op
    from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_sparse_op

    for op in o_main_program.global_block().ops:
        if not is_distributed_sparse_op(op) and not is_sparse_op(op):
            continue

        param_name = op.input("W")[0]

        if param_name == varname and op.type == "lookup_table" or op.type == "lookup_table_v2":
            if op.has_attr('table_class') and op.attr("table_class") != "none":
                return op.attr('table_class')
            else:
52
                return "MemorySparseTable"
T
Thunderbrook 已提交
53 54


55 56 57 58 59 60 61
def get_default_accessor_proto(accessor, varname, o_main_program):
    embedding_dim = 0
    for var in o_main_program.list_vars():
        if var.name == varname:
            embedding_dim = var.shape[1]
            break

62 63 64
    if not accessor.HasField("accessor_class"):
        accessor.accessor_class = "CtrCommonAccessor"
    if not accessor.HasField("fea_dim"):
65
        accessor.fea_dim = embedding_dim
66
    if not accessor.HasField("embedx_dim"):
67
        accessor.embedx_dim = embedding_dim - 3
68 69
    if not accessor.HasField("embedx_threshold"):
        accessor.embedx_threshold = 0
70 71

    ctr_accessor_param = accessor.ctr_accessor_param
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    if not ctr_accessor_param.HasField("nonclk_coeff"):
        ctr_accessor_param.nonclk_coeff = 0.1
    if not ctr_accessor_param.HasField("click_coeff"):
        ctr_accessor_param.click_coeff = 1.0
    if not ctr_accessor_param.HasField("base_threshold"):
        ctr_accessor_param.base_threshold = 0
    if not ctr_accessor_param.HasField("delta_threshold"):
        ctr_accessor_param.delta_threshold = 0
    if not ctr_accessor_param.HasField("delta_keep_days"):
        ctr_accessor_param.delta_keep_days = 16
    if not ctr_accessor_param.HasField("show_click_decay_rate"):
        ctr_accessor_param.show_click_decay_rate = 1
    if not ctr_accessor_param.HasField("delete_threshold"):
        ctr_accessor_param.delete_threshold = 0
    if not ctr_accessor_param.HasField("delete_after_unseen_days"):
        ctr_accessor_param.delete_after_unseen_days = 30
    if not ctr_accessor_param.HasField("ssd_unseenday_threshold"):
        ctr_accessor_param.ssd_unseenday_threshold = 1

    for sgd_param in [accessor.embed_sgd_param, accessor.embedx_sgd_param]:
        if not sgd_param.HasField("name"):
            sgd_param.name = "SparseAdaGradSGDRule"
        if sgd_param.name == "SparseAdaGradSGDRule" or sgd_param.name == "StdAdaGradSGDRule":
            if not sgd_param.adagrad.HasField("learning_rate"):
                sgd_param.adagrad.learning_rate = 0.05
            if not sgd_param.adagrad.HasField("initial_g2sum"):
                sgd_param.adagrad.initial_g2sum = 3.0
            if not sgd_param.adagrad.HasField("initial_range"):
                sgd_param.adagrad.initial_range = 0.0001
            if len(sgd_param.adagrad.weight_bounds) == 0:
                sgd_param.adagrad.weight_bounds.extend([-10.0, 10.0])
        if sgd_param.name == "SparseNaiveSGDRule":
            if not sgd_param.naive.HasField("learning_rate"):
                sgd_param.naive.learning_rate = 0.05
            if not sgd_param.naive.HasField("initial_range"):
                sgd_param.naive.initial_range = 0.0001
            if len(sgd_param.naive.weight_bounds) == 0:
                sgd_param.naive.weight_bounds.extend([-10.0, 10.0])
        if sgd_param.name == "SparseAdamSGDRule":
            if not sgd_param.adam.HasField("learning_rate"):
                sgd_param.adam.learning_rate = 0.001
            if not sgd_param.adam.HasField("initial_range"):
                sgd_param.adam.initial_range = 0.0001
            if not sgd_param.adam.HasField("beta1_decay_rate"):
                sgd_param.adam.beta1_decay_rate = 0.9
            if not sgd_param.adam.HasField("beta2_decay_rate"):
                sgd_param.adam.beta2_decay_rate = 0.999
            if not sgd_param.adam.HasField("ada_epsilon"):
                sgd_param.adam.ada_epsilon = 1e-08
            if len(sgd_param.adam.weight_bounds) == 0:
                sgd_param.adam.weight_bounds.extend([-10.0, 10.0])
123 124 125 126 127 128 129 130 131


def check_embedding_dim(accessor, varname, o_main_program):
    embedding_dim = 0
    for var in o_main_program.list_vars():
        if var.name == varname:
            embedding_dim = var.shape[1]
            break
    fea_dim = accessor.fea_dim
132
    if fea_dim != embedding_dim:
133
        raise ValueError(
134 135
            "The fea_dim is wrong, it will be sparse_embedding_dim: {}, but got {}".
            format(embedding_dim, fea_dim))
136
    embedx_dim = accessor.embedx_dim
137
    if embedx_dim != embedding_dim - 3:
138
        raise ValueError(
139 140
            "The embedx_dim is wrong, it will be sparse_embedding_dim - 3: {}, but got {}".
            format(embedding_dim - 3, embedx_dim))
141 142


T
tangwei12 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
class Accessor:
    def __init__(self):
        self.accessor_class = ""
        self.optimizer = None
        self.feature_dim = -1
        self.embedding_dim = -1
        self.optimizer = None

    def to_string(self, indent):
        accessor_str = "{}accessor {{{}\n{}}}"
        attrs = ""
        attrs += "accessor_class: \"{}\" ".format(self.accessor_class)
        attrs += "fea_dim: {} ".format(self.feature_dim)
        attrs += "embedx_dim: {} ".format(self.embedding_dim)
        attrs += "\n"
        if self.optimizer is not None:
            attrs += self.optimizer.to_string(indent)
        return accessor_str.format(
            conv_indent(indent), attrs, conv_indent(indent))


class CommonAccessor:
    def __init__(self):
        self.accessor_class = ""
        self.table_name = None
T
tangwei12 已提交
168
        self.entry = None
T
tangwei12 已提交
169 170 171 172 173
        self.attrs = []
        self.params = []
        self.dims = []
        self.trainer_num = 0
        self.sync = "false"
174 175
        self.table_num = None
        self.table_dim = None
T
tangwei12 已提交
176 177 178 179 180 181 182 183 184 185 186 187
        self.initializers = []
        self.opt_input_map = {}
        self.opt_attr_map = {}
        self.opt_init_map = {}
        self.define_optimize_map()

    def define_optimize_map(self):
        opt_input_map = {}
        opt_input_map["sgd"] = [("Param", None), ("LearningRate", 1)]
        opt_input_map["adam"] = [("Param", None), ("Moment1", None),
                                 ("Moment2", None), ("Beta1Pow", 1),
                                 ("Beta2Pow", 1), ("LearningRate", 1)]
188 189 190 191 192
        opt_input_map["adam_d2sum"] = [
            ("Param", None), ("D2Sum", None), ("G2Sum", None), ("Moment", None),
            ("MomentDecayRate", 1), ("AdaDecayRate", 1), ("AdaEpsilon", 1),
            ("LearningRate", 1)
        ]
T
tangwei12 已提交
193
        opt_input_map["sum"] = [("Param", None)]
T
Thunderbrook 已提交
194 195
        opt_input_map["naive_adagrad"] = [("Param", None), ("G2Sum", 1),
                                          ("LearningRate", 1)]
T
tangwei12 已提交
196 197 198 199

        opt_attr_map = {}
        opt_attr_map["sgd"] = []
        opt_attr_map["sum"] = []
T
Thunderbrook 已提交
200
        opt_attr_map["naive_adagrad"] = []
T
tangwei12 已提交
201 202
        opt_attr_map["adam"] = [("beta1", "f"), ("beta2", "f"),
                                ("epsilon", "f")]
203 204
        opt_attr_map["adam_d2sum"] = [("beta1", "f"), ("beta2", "f"),
                                      ("epsilon", "f")]
T
tangwei12 已提交
205 206 207 208 209 210 211 212 213 214 215

        opt_init_map = {}
        opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
        opt_init_map["fill_constant"] = ["value"]
        opt_init_map["uniform_random"] = ["seed", "min", "max"]
        opt_init_map["truncated_gaussian_random"] = ["seed", "mean", "std"]

        self.opt_attr_map = opt_attr_map
        self.opt_input_map = opt_input_map
        self.opt_init_map = opt_init_map

T
tangwei12 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    def parse_entry(self, varname, o_main_program):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_distributed_sparse_op
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_sparse_op

        for op in o_main_program.global_block().ops:
            if not is_distributed_sparse_op(op) and not is_sparse_op(op):
                continue

            param_name = op.input("W")[0]

            if param_name == varname and op.type == "lookup_table":
                self.entry = op.attr('entry')
                break

            if param_name == varname and op.type == "lookup_table_v2":
                self.entry = "none"
                break

T
tangwei12 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    def get_shard(self, total_dim, shard_num, pserver_id):
        # remainder = total_dim % shard_num
        blocksize = int(total_dim / shard_num + 1)

        if blocksize * (pserver_id + 1) <= total_dim:
            return blocksize
        else:
            if blocksize * pserver_id < total_dim:
                return total_dim - blocksize * pserver_id
            else:
                return 0

    def get_initializer_attr(self, value_name, o_startup_program):
        l_in = "&"
        attr_str = ""

        origin_var_name = value_name
        for op in o_startup_program.global_block().ops:
            if op.type in self.opt_init_map.keys(
            ) and origin_var_name == op.output("Out")[0]:
                init_attr = [op.type]
                for attr in self.opt_init_map[op.type]:
                    init_attr.append(str(op.attr(attr)))
                attr_str = l_in.join(init_attr)
                break
        return attr_str

261
    def parse_by_optimizer(self, grad_name, is_sparse, size, single_dim,
262
                           compiled_strategy, adam_d2sum):
T
tangwei12 已提交
263 264 265 266 267 268 269 270 271
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_optimize_ops
        param_name = compiled_strategy.grad_name_to_param_name[grad_name]
        main_program, startup_program = compiled_strategy.get_origin_programs()
        pserver_id = compiled_strategy.get_role_id()
        pserver_num = len(compiled_strategy.get_ps_endpoints())
        optimizer_ops = _get_optimize_ops(main_program)
        oop = None

        for op in optimizer_ops:
272 273
            if ("Param" in op.input_names) and (
                    op.input("Param")[0] == param_name):
T
tangwei12 已提交
274 275 276 277 278 279 280 281 282 283 284 285
                oop = op
                break

        if oop is None:
            raise ValueError("can not find optimizer for {}".format(grad_name))

        params = []
        dims = []
        attrs = []
        initializers = []

        self.trainer_num = compiled_strategy.get_trainers()
286 287
        self.table_num = size
        self.table_dim = single_dim
T
tangwei12 已提交
288

289 290 291 292
        if oop.type != 'adam' and adam_d2sum == True:
            print('optimization algorithm is not adam, set adam_d2sum False')
            adam_d2sum = False
        print("adam_d2sum:", adam_d2sum)
T
tangwei12 已提交
293 294 295 296
        if compiled_strategy.is_geo_mode():
            param_varnames = self.opt_input_map["sum"]
            attr_varnames = self.opt_attr_map["sum"]
            self.accessor_class = "sum"
T
Thunderbrook 已提交
297 298 299 300
        elif compiled_strategy.use_ps_gpu and is_sparse:
            param_varnames = self.opt_input_map["naive_adagrad"]
            attr_varnames = self.opt_attr_map["naive_adagrad"]
            self.accessor_class = "sgd"
301
        elif adam_d2sum and not is_sparse:
302 303 304
            param_varnames = self.opt_input_map["adam_d2sum"]
            attr_varnames = self.opt_attr_map["adam_d2sum"]
            self.accessor_class = "adam_d2sum"
T
tangwei12 已提交
305 306 307 308 309 310 311
        else:
            param_varnames = self.opt_input_map[oop.type]
            attr_varnames = self.opt_attr_map[oop.type]
            self.accessor_class = oop.type

        for (formal_name, shape) in param_varnames:
            params.append(formal_name)
312 313
            if self.accessor_class == "adam_d2sum":
                #for dims
T
Thunderbrook 已提交
314 315
                if shape is None:
                    if is_sparse:
316
                        shape = single_dim
T
Thunderbrook 已提交
317
                    else:
318
                        shape = self.get_shard(size, pserver_num, pserver_id)
T
Thunderbrook 已提交
319 320
                dims.append(shape)

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
                #for initializers
                if formal_name == "Param" or formal_name == "LearningRate":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
                    #TODO: for dense learning_rate, can be different from sparse lr
                    if formal_name == "LearningRate" and param.name != "learning_rate_0":
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
                            "learning_rate_0"]

                    initializer = self.get_initializer_attr(param.name,
                                                            startup_program)
                elif formal_name == "MomentDecayRate":
                    initializer = "fill_constant&0.99"
                elif formal_name == "AdaDecayRate":
                    initializer = "fill_constant&0.9999"
                elif formal_name == "AdaEpsilon":
                    initializer = "fill_constant&1.0e-8"
                else:
                    initializer = "fill_constant&0"
T
Thunderbrook 已提交
341
                initializers.append(initializer)
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
            else:
                if formal_name == "G2Sum":
                    dims.append(1)
                    initializer = "fill_constant&0"
                    initializers.append(initializer)
                else:
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
                    if formal_name == "LearningRate" and param.name != "learning_rate_0":
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
                            "learning_rate_0"]

                    if shape is None:
                        if is_sparse:
357
                            shape = single_dim
358
                        else:
359
                            shape = self.get_shard(size, pserver_num,
360 361 362 363 364 365
                                                   pserver_id)
                    dims.append(shape)

                    initializer = self.get_initializer_attr(param.name,
                                                            startup_program)
                    initializers.append(initializer)
T
tangwei12 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

        for (attr_varname, type_) in attr_varnames:
            value = oop.attr(attr_varname)
            attrs.append("&".join([attr_varname, type_, str(value)]))

        self.params = params
        self.dims = dims
        self.initializers = initializers
        self.attrs = attrs

    def to_string(self, indent):
        accessor_str = "{}common {{{}\n{}}}"
        attrs = ""
        attrs += "name: \"{}\" ".format(self.accessor_class)

        if self.table_name:
            attrs += "table_name: \"{}\" ".format(self.table_name)

T
tangwei12 已提交
384 385
        if self.entry:
            attrs += "entry: \"{}\" ".format(self.entry)
T
tangwei12 已提交
386 387
        attrs += "trainer_num: {} ".format(self.trainer_num)
        attrs += "sync: {} ".format(self.sync)
388 389 390 391
        if self.table_num:
            attrs += "table_num: {} ".format(self.table_num)
        if self.table_dim:
            attrs += "table_dim: {} ".format(self.table_dim)
T
tangwei12 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

        for param in self.params:
            attrs += "params: \"{}\" ".format(param)

        for dim in self.dims:
            attrs += "dims: {} ".format(dim)

        for initializer in self.initializers:
            attrs += "initializers: \"{}\" ".format(initializer)

        attrs += "\n"
        return accessor_str.format(
            conv_indent(indent), attrs, conv_indent(indent))


407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
class Tensor:
    def __init__(self):
        self.main_program_id = None
        self.startup_program_id = None
        self.feed_var_name = None
        self.fetch_var_name = None
        self.tensor_table_class = False

    def to_string(self, indent):
        program_str = "{}tensor {{{}\n{}}}"
        attrs = ""
        attrs += "feed_var_name: \"{}\" ".format(str(self.feed_var_name))
        attrs += "fetch_var_name: \"{}\" ".format(str(self.fetch_var_name))
        attrs += "startup_program_id: {} ".format(str(self.startup_program_id))
        attrs += "main_program_id: {} ".format(str(self.main_program_id))
        attrs += "tensor_table_class: \"{}\" ".format(
            str(self.tensor_table_class))
        attrs += "\n"
        return program_str.format(
            conv_indent(indent), attrs, conv_indent(indent))


T
tangwei12 已提交
429 430 431 432 433 434 435 436
class Table:
    def __init__(self):
        self.id = -1
        self.table_class = None
        self.shard_num = -1
        self.type = None
        self.accessor = None
        self.common = None
437
        self.tensor = None
438
        self.accessor_proto = None
T
tangwei12 已提交
439 440

    def to_string(self, indent):
441 442 443 444 445
        # if self.id == 1:
        #     proto_txt = ''
        #     with open('./sparse_table.prototxt') as f:
        #         proto_txt = f.read()
        #     return proto_txt
T
tangwei12 已提交
446 447 448 449 450 451 452 453 454 455
        table_str = "{}downpour_table_param {{{}\n{}}}"

        attrs = ""
        attrs += "table_id: {} ".format(self.id)
        attrs += "table_class: \"{}\" ".format(self.table_class)
        attrs += "shard_num: {} ".format(self.shard_num)
        attrs += "type: {}".format(self.type)
        attrs += "\n"
        indent += 2

456 457 458 459 460
        if self.accessor_proto is not None:
            accessor_str = "{}accessor {{{}\n{}}}"
            accessor_str = accessor_str.format(
                conv_indent(indent), self.accessor_proto, conv_indent(indent))
            attrs += accessor_str + "\n"
461
        elif self.accessor is not None:
T
tangwei12 已提交
462 463 464
            attrs += self.accessor.to_string(indent)
            attrs += "\n"

465 466 467 468
        if self.tensor is not None:
            attrs += self.tensor.to_string(indent)
            attrs += "\n"

T
tangwei12 已提交
469 470 471 472 473 474 475 476 477 478 479
        if self.common is not None:
            attrs += self.common.to_string(indent)
            attrs += "\n"

        return table_str.format(conv_indent(indent), attrs, conv_indent(indent))


class Service:
    def __init__(self):
        self.server_class = "BrpcPsServer"
        self.client_class = "BrpcPsClient"
T
tangwei12 已提交
480
        self.service_class = "BrpcPsService"
T
tangwei12 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
        self.start_server_port = 0
        self.server_thread_num = 12

    def to_string(self, indent):
        service_str = "{}service_param {{{}\n{}}}"

        attrs = ""
        attrs += "server_class: \"{}\" ".format(self.server_class)
        attrs += "client_class: \"{}\" ".format(self.client_class)
        attrs += "service_class: \"{}\" ".format(self.service_class)
        attrs += "start_server_port: {} ".format(self.start_server_port)
        attrs += "server_thread_num: {} ".format(self.server_thread_num)

        return service_str.format(
            conv_indent(indent), attrs, conv_indent(indent))


class DownpourServer:
    def __init__(self):
        self.service = None
        self.tables = []

    def set_service_param(self, service):
        self.service = service

    def append_tables(self, table):
        if not isinstance(table, Table):
            raise ValueError("only support instance Table")
        self.tables.append(table)

    def to_string(self, indent):
        server_str = "{}downpour_server_param {{{}\n{}}}"

        table_strs = ""
        indent += 2

        table_strs += "\n"
        table_strs += self.service.to_string(indent)

        for table in self.tables:
            table_strs += "\n"
            table_strs += table.to_string(indent)
        return server_str.format(
            conv_indent(indent), table_strs, conv_indent(indent))


class Server:
    def __init__(self):
        self.servers = []

    def add_server(self, server):
        if not isinstance(server, DownpourServer):
            raise ValueError("only support instance DownpourServer")
        self.servers.append(server)

    def __str__(self):
        server_str = "server_param {{{}\n}}"
        indent = 2
        servers_str = ""
        for server in self.servers:
            servers_str += "\n"
            servers_str += server.to_string(indent)

        return server_str.format(servers_str)


class DownpourWorker:
    def __init__(self):
        self.tables = []

    def append_tables(self, table):
        if not isinstance(table, Table):
            raise ValueError("only support instance Table")
        self.tables.append(table)

    def to_string(self, indent):
        worker_str = "{}downpour_worker_param {{{}\n{}}}"
        table_strs = ""
        indent += 2
        for table in self.tables:
            table_strs += "\n"
            table_strs += table.to_string(indent)

        return worker_str.format(
            conv_indent(indent), table_strs, conv_indent(indent))


class Worker:
    def __init__(self):
        self.workers = []

    def add_worker(self, worker):
        if not isinstance(worker, DownpourWorker):
            raise ValueError("only support instance DownpourWorker")
        self.workers.append(worker)

    def __str__(self):
        worker_str = "worker_param {{{}\n}}"
        indent = 2
        workers_str = ""
        for worker in self.workers:
            workers_str += "\n"
            workers_str += worker.to_string(indent)

        return worker_str.format(workers_str)


588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
class fsClient:
    def __init__(self, proto):
        self.proto = proto
        self.uri = proto.uri
        self.user = proto.user
        self.passwd = proto.passwd
        self.hadoop_bin = proto.hadoop_bin

    def to_string(self):
        from google.protobuf import text_format
        proto_txt = text_format.MessageToString(self.proto)
        if proto_txt:
            fs_str = "fs_client_param {{\n{}}}"
            return fs_str.format(proto_txt)
        else:
            return ""


T
tangwei12 已提交
606 607 608 609 610 611
class TheOnePSRuntime(RuntimeBase):
    def __init__(self):
        super(TheOnePSRuntime, self).__init__()
        self._communicator = None
        self._server = None
        self._worker = fluid.core.DistFleetWrapper()
612
        self._server_sub_program = []
T
tangwei12 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
        self._heter_client = None

    def _set_basic_info(self, context):
        self.context = context
        self.role_maker = context["role_maker"]
        self.origin_main_program = context["origin_main_program"]
        self.origin_startup_program = context["origin_startup_program"]
        self.async_strategy = self._get_distributed_strategy()
        self.compiled_strategy = self.build_compiled_startegy()

    def _get_distributed_strategy(self):
        strategy = None

        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \
            StrategyFactory

        dist_strategy = self.context["valid_strategy"]
        k_steps = dist_strategy.a_sync_configs["k_steps"]

        if not dist_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_sync_strategy()

        if dist_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_async_strategy()

        if dist_strategy.a_sync and k_steps > 0:
            strategy = StrategyFactory.create_geo_strategy(k_steps)

        if not strategy:
            raise ValueError("k_steps must be invalid value, please check")

T
Thunderbrook 已提交
644 645
        if dist_strategy.a_sync_configs["use_ps_gpu"]:
            strategy.use_ps_gpu = True
T
tangwei12 已提交
646 647 648 649 650 651 652 653
        return strategy

    def build_compiled_startegy(self):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import CompileTimeStrategy

        compiled_config = CompileTimeStrategy(
            self.origin_main_program, self.origin_main_program,
            self.async_strategy, self.role_maker)
T
Thunderbrook 已提交
654 655
        if self.async_strategy.use_ps_gpu:
            compiled_config.use_ps_gpu = True
T
tangwei12 已提交
656 657 658 659 660 661 662 663 664 665
        return compiled_config

    def _init_worker(self):
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \
            SyncStrategy, GeoStrategy

        is_sync = self.compiled_strategy.is_sync_mode()
        worker = self._get_fleet_proto(is_server=False, is_sync=is_sync)
        server = self._get_fleet_proto(is_server=True, is_sync=is_sync)

T
Thunderbrook 已提交
666 667 668 669 670 671 672 673 674 675 676
        dist_strategy = self.context["valid_strategy"]
        use_ps_gpu = dist_strategy.a_sync_configs["use_ps_gpu"]
        if use_ps_gpu:
            main_program = self.context['loss'].block.program
            if not main_program._fleet_opt:
                main_program._fleet_opt = {}
            main_program._fleet_opt["use_ps_gpu"] = True
            gpus_env = os.getenv("FLAGS_selected_gpus")
            main_program._fleet_opt[
                "worker_places"] = [int(s) for s in gpus_env.split(",")]

T
tangwei12 已提交
677 678 679 680 681 682 683 684
        def sync_strategy_envs():
            kwargs = {}
            kwargs[
                "pserver_endpoints"] = self.role_maker._get_pserver_endpoints()
            kwargs["trainer_id"] = self.role_maker._worker_index()
            return kwargs

        proto_txt = str(worker) + "\n" + str(server)
685 686
        with open('proto_txt', 'w') as f:
            f.write(proto_txt)
T
tangwei12 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))

        if debug:
            print("worker: \n{}".format(proto_txt))

        endpoints = self.compiled_strategy.get_ps_endpoints()

        string_hosts = []
        for idx, ep in enumerate(endpoints):
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            string_hosts.append(pshost.serialize_to_string())

        dense_map = self.compiled_strategy.get_the_one_recv_context(
            split_dense_table=self.role_maker._is_heter_parameter_server_mode)
        send_ctx = self.compiled_strategy.get_the_one_send_context(
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
Z
zmx 已提交
705
            use_origin_program=self.role_maker._is_heter_parameter_server_mode,
T
tangwei12 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
            ep_list=endpoints)
        trainer_config = self.async_strategy.get_trainer_runtime_config()

        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
        if debug:
            print("worker: \n{}".format(proto_txt))
            print("communicator send_ctx:")
            for key in send_ctx:
                print("{}: {}".format(key, send_ctx[key]))
            for key in dense_map:
                print("{}: {}".format(key, dense_map[key]))

        kwargs = {}
        kwargs['need_global_step'] = "0"
        kwargs["trainer_id"] = self.role_maker._role_id()
        kwargs["trainers"] = self.role_maker._worker_num()
722 723
        #if self.role_maker._is_heter_worker():
        #    kwargs["trainer_id"] += kwargs["trainers"]
T
tangwei12 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740

        for table in server.servers[0].tables:
            if table.table_class == "BarrierTable":
                kwargs["barrier_table_id"] = table.id
                break

        if isinstance(self.async_strategy, SyncStrategy):
            sync_kwargs = sync_strategy_envs()
            kwargs.update(sync_kwargs)

        from paddle.fluid.communicator import Communicator, HeterClient
        self._communicator = Communicator(
            trainer_config.mode, kwargs,
            trainer_config.get_communicator_flags())
        self._communicator.init_with_ctx(send_ctx, dense_map, proto_txt,
                                         string_hosts, fluid.global_scope())

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
        import paddle.distributed.fleet as fleet
        fleet.util.barrier()
        info = self._communicator.get_client_info()
        if isinstance(info, list) and len(info) > 0:
            all_info = self.role_maker._all_gather(info[0])
            # for unittest
            if not isinstance(all_info, list):
                warnings.warn("gloo may not initialize correctly")
                all_info = [all_info]
            self._communicator.set_clients(all_info)
            # create_c2c_connection default param: 
            #  pserver_timeout_ms=500000
            #  pserver_connect_timeout_ms=10000
            #  max_retry=3
            self._communicator.create_client_to_client_connection()
            print('create c2c connection done')
        else:
            print('cannot create c2c connection')

T
tangwei12 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773
        dist_strategy = self.context["valid_strategy"]

        is_test = bool(int(os.getenv("TEST_MODE", "0")))

        if self.role_maker._is_first_worker(
        ) and self.role_maker._is_heter_parameter_server_mode:
            # for ps-heter mode load all parameters on first_worker
            init_params = self.compiled_strategy.get_the_one_recv_context(
                split_dense_table=True, use_origin_program=True)
        else:
            init_params = dense_map

        if not is_test:
            self._communicator.init_params(init_params)
Z
zhaocaibei123 已提交
774 775 776
            fleet.util.barrier()
        self._communicator.pull_dense(init_params)
        fleet.util.barrier()
T
tangwei12 已提交
777 778 779 780 781 782 783 784 785 786 787

        if not self._communicator.is_running():
            self._communicator.start()
        else:
            warnings.warn("communicator has been initialized, skip")

        launch_barrier = dist_strategy.a_sync_configs["launch_barrier"]
        launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1"))
        if launch_barrier and launch_barrier_flag:
            # for trainer wait server ready
            wait_server_ready(self.role_maker._get_pserver_endpoints())
788 789 790 791 792 793 794 795 796 797 798 799 800
            if self.role_maker._is_heter_parameter_server_mode and self.role_maker._get_next_trainers(
            ) != []:
                wait_server_ready(self.role_maker._get_next_trainers())
            if self.role_maker._is_heter_parameter_server_mode:
                previous_trainers = []
                if self.role_maker._get_previous_trainers() != []:
                    previous_trainers = self.role_maker._get_previous_trainers()
                next_trainers = []
                if self.role_maker._get_next_trainers() != []:
                    next_trainers = self.role_maker._get_next_trainers()
                self._heter_client = HeterClient(next_trainers,
                                                 previous_trainers,
                                                 self.role_maker._role_id())
T
tangwei12 已提交
801 802 803 804 805 806 807 808 809 810 811

    def _push_sparse_param(self,
                           var_name,
                           table_id=-1,
                           scope=fluid.global_scope()):
        self._communicator.push_sparse_param(var_name, table_id, scope)

    def _get_executor(self):
        executor = fluid.Executor(fluid.CPUPlace())
        if self.role_maker._is_heter_parameter_server_mode:
            if self.role_maker._is_heter_worker():
812 813 814 815 816
                heter_device_type = self.role_maker._heter_device_type().upper()
                if heter_device_type not in ["GPU", "XPU", "CPU"]:
                    raise ValueError("Heter Worker Not Support Device {}".
                                     format(device_type))
                if heter_device_type == "GPU":
T
tangwei12 已提交
817 818 819
                    executor = Executor(
                        fluid.CUDAPlace(
                            int(os.getenv("FLAGS_selected_gpus", "0"))))
820
                elif heter_device_type == "XPU":
T
tangwei12 已提交
821 822 823 824 825
                    executor = Executor(
                        fluid.XPUPlace(
                            int(os.getenv("FLAGS_selected_xpus", "0"))))
        return executor

826
    def _get_fleet_proto(self, is_server, is_sync, **kwargs):
T
tangwei12 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
        def _build_merge_accessor(ctx):
            accessor = Accessor()
            accessor.accessor_class = "CommMergeAccessor"
            accessor.optimizer = None

            if ctx.is_sparse():
                accessor.feature_dim = ctx.sections()[0]
                accessor.embedding_dim = ctx.sections()[1]
            else:
                accessor.feature_dim = ctx.sections()[0]
                accessor.embedding_dim = 1

            return accessor

        def _build_barrier_table(idx):
            table = Table()
            table.id = idx
            table.type = "PS_OTHER_TABLE"
            table.table_class = "BarrierTable"
            table.shard_num = 256

            accessor = Accessor()
            accessor.accessor_class = "CommMergeAccessor"
            accessor.optimizer = None
            accessor.feature_dim = 0
            accessor.embedding_dim = 0
            table.accessor = accessor

            common = CommonAccessor()
            common.table_name = "barrier_table"
            trainer_num = self.compiled_strategy.get_trainers()
            if self.role_maker._is_heter_parameter_server_mode:
                trainer_num += len(self.role_maker._get_heter_worker_endpoints(
                ))
            common.trainer_num = trainer_num
            common.attrs = ""
            common.dims = []
            common.params = []
            table.common = common
            return table

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
        def _build_tensor_table(idx, tensor_dict):
            table = Table()
            table.id = idx
            table.type = "PS_OTHER_TABLE"
            table.table_class = tensor_dict["tensor_table_class"]
            table.shard_num = 256

            accessor = Accessor()
            accessor.accessor_class = "CommMergeAccessor"
            accessor.optimizer = None
            accessor.feature_dim = 0
            accessor.embedding_dim = 0
            table.accessor = accessor

            common = CommonAccessor()
            common.table_name = tensor_dict["feed_var_name"]
            common.trainer_num = self.compiled_strategy.get_trainers()
            common.attrs = ""
            common.dims = []
            common.params = []
            table.common = common

            tensor = Tensor()
            tensor.main_program_id = tensor_dict["main_program_id"]
            tensor.startup_program_id = tensor_dict["startup_program_id"]
            tensor.feed_var_name = tensor_dict["feed_var_name"]
            tensor.fetch_var_name = tensor_dict["fetch_var_name"]
            tensor.tensor_table_class = tensor_dict["tensor_table_class"]
            table.tensor = tensor

            return table

        def _add_tensor_table(tables):
            tensor_table_dict = self.compiled_strategy.get_tensor_table_dict()
            program_idx = 0
            for table_name in tensor_table_dict:
                if tensor_table_dict[table_name]["startup_program"] != None:
                    tensor_table_dict[table_name][
                        "startup_program_id"] = program_idx
                    self._server_sub_program.append(tensor_table_dict[
                        table_name]["startup_program"].desc)
                    program_idx += 1
                if tensor_table_dict[table_name]["main_program"] != None:
                    tensor_table_dict[table_name][
                        "main_program_id"] = program_idx
                    self._server_sub_program.append(tensor_table_dict[
                        table_name]["main_program"].desc)
                    program_idx += 1
                # Todo: Hard code for lr_decay table apply table id
                new_table = _build_tensor_table(
                    len(tables), tensor_table_dict[table_name])
                tables.append(new_table)
            return tables

T
tangwei12 已提交
922 923 924 925 926
        def _get_tables():
            send_ctx = self.compiled_strategy.get_the_one_send_context(
                use_origin_program=True,
                split_dense_table=self.role_maker.
                _is_heter_parameter_server_mode)
T
tangwei12 已提交
927

928
            tables = []
T
tangwei12 已提交
929
            for idx, (name, ctx) in enumerate(send_ctx.items()):
T
tangwei12 已提交
930 931 932
                if ctx.is_tensor_table() or len(ctx.origin_varnames()) < 1:
                    continue

T
tangwei12 已提交
933 934
                table = Table()
                table.id = ctx.table_id()
T
tangwei12 已提交
935
                common = CommonAccessor()
936

T
tangwei12 已提交
937 938
                if ctx.is_sparse():
                    table.type = "PS_SPARSE_TABLE"
T
tangwei12 已提交
939
                    table.shard_num = 256
T
tangwei12 已提交
940

T
Thunderbrook 已提交
941 942 943
                    common.table_name = self.compiled_strategy.grad_name_to_param_name[
                        ctx.origin_varnames()[0]]

T
tangwei12 已提交
944
                    if self.compiled_strategy.is_geo_mode():
Z
zhaocaibei123 已提交
945
                        table.table_class = "MemorySparseGeoTable"
T
tangwei12 已提交
946
                    else:
947 948 949 950 951 952 953 954
                        all_table_proto = self.context[
                            "user_defined_strategy"].sparse_table_configs
                        table_proto = all_table_proto.add()
                        for proto in all_table_proto:
                            if proto.table_name == common.table_name:
                                table_proto = proto
                                break
                        if table_proto.HasField("table_class"):
955 956 957 958 959 960 961 962 963
                            table.table_class = table_proto.table_class
                        else:
                            table.table_class = parse_table_class(
                                common.table_name, self.origin_main_program)
                        if table.table_class != 'MemorySparseTable':
                            table.table_class = 'MemorySparseTable'
                            warnings.warn(
                                "The PS mode must use MemorySparseTable.")

964
                        if table_proto.HasField("shard_num"):
965 966 967 968 969 970 971 972 973 974 975
                            table.shard_num = table_proto.shard_num
                        else:
                            table.shard_num = 1000
                            warnings.warn(
                                "The shard_num of sparse table is not set, use default value 1000."
                            )

                        if table_proto.accessor.ByteSize() == 0:
                            warnings.warn(
                                "The accessor of sparse table is not set, use default value."
                            )
976 977 978
                        get_default_accessor_proto(table_proto.accessor,
                                                   common.table_name,
                                                   self.origin_main_program)
979 980 981
                        check_embedding_dim(table_proto.accessor,
                                            common.table_name,
                                            self.origin_main_program)
982 983 984
                        from google.protobuf import text_format
                        table.accessor_proto = text_format.MessageToString(
                            table_proto.accessor)
T
tangwei12 已提交
985
                else:
T
tangwei12 已提交
986 987 988
                    table.type = "PS_DENSE_TABLE"
                    table.table_class = "CommonDenseTable"
                    table.shard_num = 256
T
tangwei12 已提交
989 990
                    common.table_name = "MergedDense"

991
                adam_d2sum = self.context["user_defined_strategy"].adam_d2sum
T
tangwei12 已提交
992 993
                common.parse_by_optimizer(ctx.origin_varnames()[0],
                                          ctx.is_sparse(),
994 995 996
                                          ctx.sections()[0],
                                          ctx.sections()[1]
                                          if ctx.is_sparse() else 1,
997
                                          self.compiled_strategy, adam_d2sum)
T
tangwei12 已提交
998

T
tangwei12 已提交
999 1000 1001 1002
                if ctx.is_sparse():
                    common.parse_entry(common.table_name,
                                       self.origin_main_program)

T
tangwei12 已提交
1003 1004 1005 1006 1007 1008
                if is_sync:
                    common.sync = "true"
                else:
                    common.sync = "false"
                table.common = common

1009 1010 1011
                if table.table_class != 'MemorySparseTable':
                    accessor = _build_merge_accessor(ctx)
                    table.accessor = accessor
1012 1013 1014 1015 1016 1017 1018 1019
                tables.append(table)

            tensor_table_dict = self.compiled_strategy.get_tensor_table_dict()
            if len(tensor_table_dict) > 0:
                tables = _add_tensor_table(tables)
            else:
                empty_porgram = Program()
                self._server_sub_program.append(empty_porgram.desc)
T
tangwei12 已提交
1020

1021 1022
            barrier_table = _build_barrier_table(len(tables))
            tables.append(barrier_table)
T
tangwei12 已提交
1023 1024 1025 1026 1027 1028 1029
            return tables

        if is_server:
            server = Server()
            downpour_server = DownpourServer()

            service = Service()
T
Thunderbrook 已提交
1030 1031 1032 1033 1034
            dist_strategy = self.context["valid_strategy"]
            use_ps_gpu = dist_strategy.a_sync_configs["use_ps_gpu"]
            if use_ps_gpu:
                service.server_class = "PsLocalServer"
                service.client_class = "PsLocalClient"
T
tangwei12 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
            downpour_server.set_service_param(service)

            tables = _get_tables()
            downpour_server.tables = tables
            server.add_server(downpour_server)
            return server
        else:
            worker = Worker()
            downpour_worker = DownpourWorker()

            tables = _get_tables()
            downpour_worker.tables = tables
            worker.add_worker(downpour_worker)
            return worker

    def _init_server(self, dirname=None, var_names=None, **kwargs):
        role_id = self.compiled_strategy.get_role_id()
        endpoints = self.compiled_strategy.get_ps_endpoints()
        is_sync = self.compiled_strategy.is_sync_mode()
T
tangwei12 已提交
1054
        trainers = self.compiled_strategy.get_trainers()
1055 1056
        if self.role_maker._is_heter_parameter_server_mode:
            trainers += len(self.role_maker._get_heter_worker_endpoints())
T
tangwei12 已提交
1057 1058
        server = self._get_fleet_proto(is_server=True, is_sync=is_sync)
        proto_txt = str(server)
1059 1060 1061
        fs_client = fsClient(self.context["user_defined_strategy"]
                             .fs_client_param)
        proto_txt = proto_txt + "\n" + fs_client.to_string()
T
tangwei12 已提交
1062

T
tangwei12 已提交
1063
        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
T
tangwei12 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
        if debug:
            print("server: \n{}".format(proto_txt))

        string_hosts = []
        for idx, ep in enumerate(endpoints):
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            string_hosts.append(pshost.serialize_to_string())

        self._server = fluid.core.DistFleetWrapper()
T
tangwei12 已提交
1074
        self._server.init_server(proto_txt, string_hosts, role_id, trainers,
1075
                                 self._server_sub_program)
T
tangwei12 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

        from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames

        dist_varnames = get_sparse_tablenames(self.origin_main_program, True)
        sparse_varnames = get_sparse_tablenames(self.origin_main_program, False)

        distributed_varnames = dist_varnames + sparse_varnames

        if var_names is None:
            load_varnames = distributed_varnames
        else:
            for var_name in var_names:
                if var_name not in distributed_varnames:
                    raise ValueError(
                        "fleet.init server can only load sparse variables in {}".
                        format(distributed_varnames))
            load_varnames = var_names

        if dirname is None or not load_varnames:
            return

        sparse_table_maps = {}
        for table in server.servers[0].tables:
            if table.type == "PS_SPARSE_TABLE" and table.common is not None:
                sparse_table_maps[table.common.table_name] = table.id

        dirname = os.path.normpath(dirname)
        pserver_id = self.role_maker._role_id()

        for var_name in load_varnames:
            table_id = sparse_table_maps[var_name]
1107 1108 1109 1110 1111
            # path = os.path.join(dirname, var_name + PSERVER_SAVE_SUFFIX,
            #                     "{}.block{}.txt".format(var_name, pserver_id))
            # meta = os.path.join(dirname, var_name + PSERVER_SAVE_SUFFIX,
            #                     "{}.block{}.meta".format(var_name, pserver_id))
            self._server.load_sparse(dirname, "0", table_id)
T
tangwei12 已提交
1112 1113 1114 1115 1116 1117 1118 1119

    def _run_server(self):
        ep = self.compiled_strategy.get_ps_endpoint()
        host, port = ep.split(":")
        self._server.run_server(host, int(port))

    def _stop_worker(self):
        self._communicator.stop()
1120 1121
        if self.role_maker._is_heter_parameter_server_mode:
            assert self._heter_client != None, "heter client should not be None in heterps mode"
T
tangwei12 已提交
1122
            self._heter_client.stop()
1123 1124
        #executor = self._get_executor()
        #executor.close()
T
tangwei12 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

    @staticmethod
    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False

            from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts

            origin_varname, _, _ = _get_varname_parts(var.name)
            if origin_varname.endswith("@GRAD"):
                return False

            if origin_varname == "learning_rate_0":
                return False

            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

1149 1150 1151 1152 1153 1154 1155
    def _get_inference_model_path(self, dirname):
        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
        return model_path

1156 1157 1158 1159 1160
    def _save_sparse_params(self, executor, dirname, context, main_program,
                            mode):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames
        distributed_varnames = get_sparse_tablenames(
            self.compiled_strategy.origin_main_program, True)
T
tangwei12 已提交
1161
        values = []
1162
        model_path = self._get_inference_model_path(dirname)
T
tangwei12 已提交
1163
        for id, names in context.items():
T
tangwei12 已提交
1164
            if names[0] not in distributed_varnames:
1165
                # only save sparse param to local
1166
                try:
1167
                    self._worker.recv_and_save_model(id, model_path)
1168 1169
                except:
                    pass
1170 1171
            # save sparse & distributed param on server
            self._worker.save_one_model(id, dirname, mode)
T
tangwei12 已提交
1172
            values.extend(names)
1173
        # self._worker.save_all_model(dirname, mode)
T
tangwei12 已提交
1174 1175
        return values

1176 1177 1178 1179 1180
    def _save_distributed_persistables(self,
                                       executor,
                                       dirname,
                                       main_program,
                                       mode=0):
T
tangwei12 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

        denses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=True,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)
        sparses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=False,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)

1191 1192
        sparse_varnames = self._save_sparse_params(executor, dirname, sparses,
                                                   main_program, mode)
T
tangwei12 已提交
1193 1194 1195 1196

        recv_dense_varnames = []
        for id, names in denses.items():
            recv_dense_varnames.extend(names)
1197
        self._communicator.pull_dense(denses)
T
tangwei12 已提交
1198

1199
        saved_varnames = sparse_varnames
T
tangwei12 已提交
1200 1201 1202 1203 1204 1205

        remaining_vars = list(
            filter(
                TheOnePSRuntime.__exclude_vars(saved_varnames),
                main_program.list_vars()))

T
tangwei12 已提交
1206 1207
        import paddle
        for var in remaining_vars:
1208 1209
            # if var.name not in recv_dense_varnames:
            #     continue
T
tangwei12 已提交
1210 1211 1212
            tensor = var.get_value()
            paddle.save(
                tensor, os.path.join(dirname, var.name), use_binary_format=True)
T
tangwei12 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

    def _ps_inference_save_persistables(self,
                                        executor,
                                        dirname,
                                        main_program=None,
                                        mode=0,
                                        **kwargs):
        """
        This function filters out all variables with `persistable==True` from the
        give `main_program` and then saves these variables to the folder `dirname`
        or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
T
tangwei12 已提交
1233
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
T
tangwei12 已提交
1234 1235 1236 1237
            )

        if not isinstance(executor, Executor):
            raise TypeError(
T
tangwei12 已提交
1238
                "in fleet.save() function, executor must be as Executor type")
T
tangwei12 已提交
1239 1240 1241 1242 1243 1244

        if main_program is None:
            main_program = self.compiled_strategy.get_origin_ps_main_program()

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
T
tangwei12 已提交
1245
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
T
tangwei12 已提交
1246 1247
            )

1248
        # Todo(MrChengmo): Save optimizer status
1249 1250 1251
        # self._save_distributed_persistables(executor, dirname, main_program,
        #                                     mode)
        self._worker.save_all_model(dirname, mode)
T
tangwei12 已提交
1252 1253 1254 1255 1256 1257 1258

    def _ps_inference_save_inference_model(self,
                                           executor,
                                           dirname,
                                           feeded_var_names,
                                           target_vars,
                                           main_program=None,
1259 1260
                                           export_for_deployment=True,
                                           mode=0):
T
tangwei12 已提交
1261 1262 1263 1264 1265 1266 1267
        """
        Prune the given `main_program` to build a new program especially for inference,
        and then save it and all related parameters to given `dirname` by the `executor`.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
T
tangwei12 已提交
1268
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
T
tangwei12 已提交
1269 1270 1271 1272
            )

        if not isinstance(executor, Executor):
            raise TypeError(
T
tangwei12 已提交
1273 1274 1275 1276 1277 1278 1279 1280
                "in fleet.save() function, executor must be as Executor type")

        import paddle
        program = self.origin_main_program if main_program is None else main_program

        if isinstance(program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
T
tangwei12 已提交
1281 1282
            )

T
tangwei12 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291
        feed_vars = [
            program.global_block().var(name) for name in feeded_var_names
        ]

        infer_program = paddle.static.normalize_program(program, feed_vars,
                                                        target_vars)

        infer_program._copy_dist_param_info_from(program)

1292
        model_path = self._get_inference_model_path(dirname)
T
tangwei12 已提交
1293
        model_basename = "__model__"
1294
        model_basename = os.path.join(model_path, model_basename)
T
tangwei12 已提交
1295 1296
        paddle.save(infer_program, model_basename)

1297 1298 1299 1300
        sparses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=False,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)
1301 1302
        sparse_names = self._save_sparse_params(executor, dirname, sparses,
                                                main_program, mode)
1303 1304 1305 1306 1307

        denses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=True,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)
Z
zhaocaibei123 已提交
1308
        # TODO(zhaocaibei123): for GEO: should call GeoCommunicator::RecvDense
1309 1310 1311 1312 1313 1314 1315
        self._communicator.pull_dense(denses)

        generate_vars = self.context[
            "user_defined_strategy"].trainer_desc_configs["stat_var_names"]
        generate_vars = [var for var in generate_vars]
        remaining_vars = list(
            filter(
1316
                TheOnePSRuntime.__exclude_vars(sparse_names),
1317
                infer_program.list_vars()))
1318

1319 1320 1321 1322 1323 1324 1325
        for var in remaining_vars:
            tensor = var.get_value()
            paddle.save(
                tensor,
                os.path.join(model_path, var.name),
                use_binary_format=True)

T
tangwei12 已提交
1326 1327 1328 1329 1330
    def _save_inference_model(self, *args, **kwargs):
        self._ps_inference_save_inference_model(*args, **kwargs)

    def _save_persistables(self, *args, **kwargs):
        self._ps_inference_save_persistables(*args, **kwargs)
1331

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
    def _load_sparse_params(self, dirname, context, main_program, mode):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames
        distributed_varnames = get_sparse_tablenames(
            self.compiled_strategy.origin_main_program, True)
        values = []
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # TODO: only load sparse param from local
                warnings.warn("varname is not in distributed_varnames, pass")
            # load sparse & distributed param on server
            self._worker.load_one_table(id, dirname, mode)
            values.extend(names)
        return values

1346 1347 1348 1349
    def _ps_inference_load_inference_model(self,
                                           dirname,
                                           mode=0,
                                           main_program=None):
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
        if main_program is None:
            main_program = self.compiled_strategy.get_origin_ps_main_program()

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        denses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=True,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)
        sparses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=False,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)

        sparse_varnames = self._load_sparse_params(dirname, sparses,
                                                   main_program, mode)

        recv_dense_varnames = []
        for id, names in denses.items():
            recv_dense_varnames.extend(names)

        loaded_varnames = sparse_varnames

        remaining_vars = list(
            filter(
                TheOnePSRuntime.__exclude_vars(loaded_varnames),
                main_program.list_vars()))

1381 1382 1383 1384
        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
1385 1386 1387 1388
        import paddle
        for var in remaining_vars:
            if var.name not in recv_dense_varnames:
                continue
1389
            tensor = paddle.load(os.path.join(model_path, var.name))
1390 1391 1392 1393
            var.set_value(tensor)

        self._communicator.init_params(denses)

1394 1395 1396
    def _load_distributed_persistables(self, path, mode):
        self._worker.load_model(path, mode)

T
Thunderbrook 已提交
1397
    def load_model(self, path, mode):
1398 1399 1400 1401
        if mode == 0 or mode == 3:
            self._load_distributed_persistables(path, mode)
        else:
            self._ps_inference_load_inference_model(path, mode)
1402
        # self._load_distributed_persistables(path, mode=mode)
T
Thunderbrook 已提交
1403

1404 1405 1406 1407 1408 1409 1410
    def _shrink(self, threshold=None):
        if threshold is not None:
            warnings.warn(
                "The param threshold is not used in MemorySparseTable, if you need to shrink, please set the config of accessor"
            )
        else:
            threshold = 0
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
        import paddle.distributed.fleet as fleet
        fleet.util.barrier()
        if self.role_maker._is_first_worker():
            sparses = self.compiled_strategy.get_the_one_recv_context(
                is_dense=False,
                split_dense_table=self.role_maker.
                _is_heter_parameter_server_mode,
                use_origin_program=True)

            for id, names in sparses.items():
                self._worker.shrink_sparse_table(id, threshold)
        fleet.util.barrier()