the_one_ps.py 43.5 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings

import os
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.framework import Program
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
from paddle.fluid.framework import Variable, Parameter
from .runtime_base import RuntimeBase
from ..base.private_helper_function import wait_server_ready

28 29
__all__ = []

T
tangwei12 已提交
30 31 32 33 34

def conv_indent(indent):
    return "".join([" "] * indent)


T
tangwei12 已提交
35
PSERVER_SAVE_SUFFIX = ".shard"
36 37


T
Thunderbrook 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
def parse_table_class(varname, o_main_program):
    from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_distributed_sparse_op
    from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_sparse_op

    for op in o_main_program.global_block().ops:
        if not is_distributed_sparse_op(op) and not is_sparse_op(op):
            continue

        param_name = op.input("W")[0]

        if param_name == varname and op.type == "lookup_table" or op.type == "lookup_table_v2":
            if op.has_attr('table_class') and op.attr("table_class") != "none":
                return op.attr('table_class')
            else:
                return "CommonSparseTable"


T
tangwei12 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
class Accessor:
    def __init__(self):
        self.accessor_class = ""
        self.optimizer = None
        self.feature_dim = -1
        self.embedding_dim = -1
        self.optimizer = None

    def to_string(self, indent):
        accessor_str = "{}accessor {{{}\n{}}}"
        attrs = ""
        attrs += "accessor_class: \"{}\" ".format(self.accessor_class)
        attrs += "fea_dim: {} ".format(self.feature_dim)
        attrs += "embedx_dim: {} ".format(self.embedding_dim)
        attrs += "\n"
        if self.optimizer is not None:
            attrs += self.optimizer.to_string(indent)
        return accessor_str.format(
            conv_indent(indent), attrs, conv_indent(indent))


class CommonAccessor:
    def __init__(self):
        self.accessor_class = ""
        self.table_name = None
T
tangwei12 已提交
80
        self.entry = None
T
tangwei12 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        self.attrs = []
        self.params = []
        self.dims = []
        self.trainer_num = 0
        self.sync = "false"
        self.initializers = []
        self.opt_input_map = {}
        self.opt_attr_map = {}
        self.opt_init_map = {}
        self.define_optimize_map()

    def define_optimize_map(self):
        opt_input_map = {}
        opt_input_map["sgd"] = [("Param", None), ("LearningRate", 1)]
        opt_input_map["adam"] = [("Param", None), ("Moment1", None),
                                 ("Moment2", None), ("Beta1Pow", 1),
                                 ("Beta2Pow", 1), ("LearningRate", 1)]
        opt_input_map["sum"] = [("Param", None)]
T
Thunderbrook 已提交
99 100
        opt_input_map["naive_adagrad"] = [("Param", None), ("G2Sum", 1),
                                          ("LearningRate", 1)]
T
tangwei12 已提交
101 102 103 104

        opt_attr_map = {}
        opt_attr_map["sgd"] = []
        opt_attr_map["sum"] = []
T
Thunderbrook 已提交
105
        opt_attr_map["naive_adagrad"] = []
T
tangwei12 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118
        opt_attr_map["adam"] = [("beta1", "f"), ("beta2", "f"),
                                ("epsilon", "f")]

        opt_init_map = {}
        opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
        opt_init_map["fill_constant"] = ["value"]
        opt_init_map["uniform_random"] = ["seed", "min", "max"]
        opt_init_map["truncated_gaussian_random"] = ["seed", "mean", "std"]

        self.opt_attr_map = opt_attr_map
        self.opt_input_map = opt_input_map
        self.opt_init_map = opt_init_map

T
tangwei12 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    def parse_entry(self, varname, o_main_program):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_distributed_sparse_op
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_sparse_op

        for op in o_main_program.global_block().ops:
            if not is_distributed_sparse_op(op) and not is_sparse_op(op):
                continue

            param_name = op.input("W")[0]

            if param_name == varname and op.type == "lookup_table":
                self.entry = op.attr('entry')
                break

            if param_name == varname and op.type == "lookup_table_v2":
                self.entry = "none"
                break

T
tangwei12 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    def get_shard(self, total_dim, shard_num, pserver_id):
        # remainder = total_dim % shard_num
        blocksize = int(total_dim / shard_num + 1)

        if blocksize * (pserver_id + 1) <= total_dim:
            return blocksize
        else:
            if blocksize * pserver_id < total_dim:
                return total_dim - blocksize * pserver_id
            else:
                return 0

    def get_initializer_attr(self, value_name, o_startup_program):
        l_in = "&"
        attr_str = ""

        origin_var_name = value_name
        for op in o_startup_program.global_block().ops:
            if op.type in self.opt_init_map.keys(
            ) and origin_var_name == op.output("Out")[0]:
                init_attr = [op.type]
                for attr in self.opt_init_map[op.type]:
                    init_attr.append(str(op.attr(attr)))
                attr_str = l_in.join(init_attr)
                break
        return attr_str

    def parse_by_optimizer(self, grad_name, is_sparse, total_dims,
                           compiled_strategy):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_optimize_ops
        param_name = compiled_strategy.grad_name_to_param_name[grad_name]
        main_program, startup_program = compiled_strategy.get_origin_programs()
        pserver_id = compiled_strategy.get_role_id()
        pserver_num = len(compiled_strategy.get_ps_endpoints())
        optimizer_ops = _get_optimize_ops(main_program)
        oop = None

        for op in optimizer_ops:
175 176
            if ("Param" in op.input_names) and (
                    op.input("Param")[0] == param_name):
T
tangwei12 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
                oop = op
                break

        if oop is None:
            raise ValueError("can not find optimizer for {}".format(grad_name))

        params = []
        dims = []
        attrs = []
        initializers = []

        self.trainer_num = compiled_strategy.get_trainers()

        if compiled_strategy.is_geo_mode():
            param_varnames = self.opt_input_map["sum"]
            attr_varnames = self.opt_attr_map["sum"]
            self.accessor_class = "sum"
T
Thunderbrook 已提交
194 195 196 197
        elif compiled_strategy.use_ps_gpu and is_sparse:
            param_varnames = self.opt_input_map["naive_adagrad"]
            attr_varnames = self.opt_attr_map["naive_adagrad"]
            self.accessor_class = "sgd"
T
tangwei12 已提交
198 199 200 201 202 203 204
        else:
            param_varnames = self.opt_input_map[oop.type]
            attr_varnames = self.opt_attr_map[oop.type]
            self.accessor_class = oop.type

        for (formal_name, shape) in param_varnames:
            params.append(formal_name)
T
Thunderbrook 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
            if formal_name == "G2Sum":
                dims.append(1)
                initializer = "fill_constant&0"
                initializers.append(initializer)
            else:
                param = main_program.global_block().vars[oop.input(formal_name)[
                    0]]
                if formal_name == "LearningRate" and param.name != "learning_rate_0":
                    warnings.warn("will support decay soon")
                    param = main_program.global_block().vars["learning_rate_0"]

                if shape is None:
                    if is_sparse:
                        shape = total_dims
                    else:
                        shape = self.get_shard(total_dims, pserver_num,
                                               pserver_id)
                dims.append(shape)

                initializer = self.get_initializer_attr(param.name,
                                                        startup_program)
                initializers.append(initializer)
T
tangwei12 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

        for (attr_varname, type_) in attr_varnames:
            value = oop.attr(attr_varname)
            attrs.append("&".join([attr_varname, type_, str(value)]))

        self.params = params
        self.dims = dims
        self.initializers = initializers
        self.attrs = attrs

    def to_string(self, indent):
        accessor_str = "{}common {{{}\n{}}}"
        attrs = ""
        attrs += "name: \"{}\" ".format(self.accessor_class)

        if self.table_name:
            attrs += "table_name: \"{}\" ".format(self.table_name)

T
tangwei12 已提交
245 246
        if self.entry:
            attrs += "entry: \"{}\" ".format(self.entry)
T
tangwei12 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        attrs += "trainer_num: {} ".format(self.trainer_num)
        attrs += "sync: {} ".format(self.sync)

        for param in self.params:
            attrs += "params: \"{}\" ".format(param)

        for dim in self.dims:
            attrs += "dims: {} ".format(dim)

        for initializer in self.initializers:
            attrs += "initializers: \"{}\" ".format(initializer)

        attrs += "\n"
        return accessor_str.format(
            conv_indent(indent), attrs, conv_indent(indent))


264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
class Tensor:
    def __init__(self):
        self.main_program_id = None
        self.startup_program_id = None
        self.feed_var_name = None
        self.fetch_var_name = None
        self.tensor_table_class = False

    def to_string(self, indent):
        program_str = "{}tensor {{{}\n{}}}"
        attrs = ""
        attrs += "feed_var_name: \"{}\" ".format(str(self.feed_var_name))
        attrs += "fetch_var_name: \"{}\" ".format(str(self.fetch_var_name))
        attrs += "startup_program_id: {} ".format(str(self.startup_program_id))
        attrs += "main_program_id: {} ".format(str(self.main_program_id))
        attrs += "tensor_table_class: \"{}\" ".format(
            str(self.tensor_table_class))
        attrs += "\n"
        return program_str.format(
            conv_indent(indent), attrs, conv_indent(indent))


T
tangwei12 已提交
286 287 288 289 290 291 292 293
class Table:
    def __init__(self):
        self.id = -1
        self.table_class = None
        self.shard_num = -1
        self.type = None
        self.accessor = None
        self.common = None
294
        self.tensor = None
T
tangwei12 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

    def to_string(self, indent):
        table_str = "{}downpour_table_param {{{}\n{}}}"

        attrs = ""
        attrs += "table_id: {} ".format(self.id)
        attrs += "table_class: \"{}\" ".format(self.table_class)
        attrs += "shard_num: {} ".format(self.shard_num)
        attrs += "type: {}".format(self.type)
        attrs += "\n"
        indent += 2

        if self.accessor is not None:
            attrs += self.accessor.to_string(indent)
            attrs += "\n"

311 312 313 314
        if self.tensor is not None:
            attrs += self.tensor.to_string(indent)
            attrs += "\n"

T
tangwei12 已提交
315 316 317 318 319 320 321 322 323 324 325
        if self.common is not None:
            attrs += self.common.to_string(indent)
            attrs += "\n"

        return table_str.format(conv_indent(indent), attrs, conv_indent(indent))


class Service:
    def __init__(self):
        self.server_class = "BrpcPsServer"
        self.client_class = "BrpcPsClient"
T
tangwei12 已提交
326
        self.service_class = "BrpcPsService"
T
tangwei12 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        self.start_server_port = 0
        self.server_thread_num = 12

    def to_string(self, indent):
        service_str = "{}service_param {{{}\n{}}}"

        attrs = ""
        attrs += "server_class: \"{}\" ".format(self.server_class)
        attrs += "client_class: \"{}\" ".format(self.client_class)
        attrs += "service_class: \"{}\" ".format(self.service_class)
        attrs += "start_server_port: {} ".format(self.start_server_port)
        attrs += "server_thread_num: {} ".format(self.server_thread_num)

        return service_str.format(
            conv_indent(indent), attrs, conv_indent(indent))


class DownpourServer:
    def __init__(self):
        self.service = None
        self.tables = []

    def set_service_param(self, service):
        self.service = service

    def append_tables(self, table):
        if not isinstance(table, Table):
            raise ValueError("only support instance Table")
        self.tables.append(table)

    def to_string(self, indent):
        server_str = "{}downpour_server_param {{{}\n{}}}"

        table_strs = ""
        indent += 2

        table_strs += "\n"
        table_strs += self.service.to_string(indent)

        for table in self.tables:
            table_strs += "\n"
            table_strs += table.to_string(indent)
        return server_str.format(
            conv_indent(indent), table_strs, conv_indent(indent))


class Server:
    def __init__(self):
        self.servers = []

    def add_server(self, server):
        if not isinstance(server, DownpourServer):
            raise ValueError("only support instance DownpourServer")
        self.servers.append(server)

    def __str__(self):
        server_str = "server_param {{{}\n}}"
        indent = 2
        servers_str = ""
        for server in self.servers:
            servers_str += "\n"
            servers_str += server.to_string(indent)

        return server_str.format(servers_str)


class DownpourWorker:
    def __init__(self):
        self.tables = []

    def append_tables(self, table):
        if not isinstance(table, Table):
            raise ValueError("only support instance Table")
        self.tables.append(table)

    def to_string(self, indent):
        worker_str = "{}downpour_worker_param {{{}\n{}}}"
        table_strs = ""
        indent += 2
        for table in self.tables:
            table_strs += "\n"
            table_strs += table.to_string(indent)

        return worker_str.format(
            conv_indent(indent), table_strs, conv_indent(indent))


class Worker:
    def __init__(self):
        self.workers = []

    def add_worker(self, worker):
        if not isinstance(worker, DownpourWorker):
            raise ValueError("only support instance DownpourWorker")
        self.workers.append(worker)

    def __str__(self):
        worker_str = "worker_param {{{}\n}}"
        indent = 2
        workers_str = ""
        for worker in self.workers:
            workers_str += "\n"
            workers_str += worker.to_string(indent)

        return worker_str.format(workers_str)


class TheOnePSRuntime(RuntimeBase):
    def __init__(self):
        super(TheOnePSRuntime, self).__init__()
        self._communicator = None
        self._server = None
        self._worker = fluid.core.DistFleetWrapper()
440
        self._server_sub_program = []
T
tangwei12 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
        self._heter_client = None

    def _set_basic_info(self, context):
        self.context = context
        self.role_maker = context["role_maker"]
        self.origin_main_program = context["origin_main_program"]
        self.origin_startup_program = context["origin_startup_program"]
        self.async_strategy = self._get_distributed_strategy()
        self.compiled_strategy = self.build_compiled_startegy()

    def _get_distributed_strategy(self):
        strategy = None

        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \
            StrategyFactory

        dist_strategy = self.context["valid_strategy"]
        k_steps = dist_strategy.a_sync_configs["k_steps"]

        if not dist_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_sync_strategy()

        if dist_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_async_strategy()

        if dist_strategy.a_sync and k_steps > 0:
            strategy = StrategyFactory.create_geo_strategy(k_steps)

        if not strategy:
            raise ValueError("k_steps must be invalid value, please check")

T
Thunderbrook 已提交
472 473
        if dist_strategy.a_sync_configs["use_ps_gpu"]:
            strategy.use_ps_gpu = True
T
tangwei12 已提交
474 475 476 477 478 479 480 481
        return strategy

    def build_compiled_startegy(self):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import CompileTimeStrategy

        compiled_config = CompileTimeStrategy(
            self.origin_main_program, self.origin_main_program,
            self.async_strategy, self.role_maker)
T
Thunderbrook 已提交
482 483
        if self.async_strategy.use_ps_gpu:
            compiled_config.use_ps_gpu = True
T
tangwei12 已提交
484 485 486 487 488 489 490 491 492 493
        return compiled_config

    def _init_worker(self):
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \
            SyncStrategy, GeoStrategy

        is_sync = self.compiled_strategy.is_sync_mode()
        worker = self._get_fleet_proto(is_server=False, is_sync=is_sync)
        server = self._get_fleet_proto(is_server=True, is_sync=is_sync)

T
Thunderbrook 已提交
494 495 496 497 498 499 500 501 502 503 504
        dist_strategy = self.context["valid_strategy"]
        use_ps_gpu = dist_strategy.a_sync_configs["use_ps_gpu"]
        if use_ps_gpu:
            main_program = self.context['loss'].block.program
            if not main_program._fleet_opt:
                main_program._fleet_opt = {}
            main_program._fleet_opt["use_ps_gpu"] = True
            gpus_env = os.getenv("FLAGS_selected_gpus")
            main_program._fleet_opt[
                "worker_places"] = [int(s) for s in gpus_env.split(",")]

T
tangwei12 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
        def sync_strategy_envs():
            kwargs = {}
            kwargs[
                "pserver_endpoints"] = self.role_maker._get_pserver_endpoints()
            kwargs["trainer_id"] = self.role_maker._worker_index()
            return kwargs

        proto_txt = str(worker) + "\n" + str(server)

        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))

        if debug:
            print("worker: \n{}".format(proto_txt))

        endpoints = self.compiled_strategy.get_ps_endpoints()

        string_hosts = []
        for idx, ep in enumerate(endpoints):
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            string_hosts.append(pshost.serialize_to_string())

        dense_map = self.compiled_strategy.get_the_one_recv_context(
            split_dense_table=self.role_maker._is_heter_parameter_server_mode)
        send_ctx = self.compiled_strategy.get_the_one_send_context(
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
Z
zmx 已提交
531
            use_origin_program=self.role_maker._is_heter_parameter_server_mode,
T
tangwei12 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
            ep_list=endpoints)
        trainer_config = self.async_strategy.get_trainer_runtime_config()

        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))

        if debug:
            print("worker: \n{}".format(proto_txt))
            print("communicator send_ctx:")
            for key in send_ctx:
                print("{}: {}".format(key, send_ctx[key]))
            for key in dense_map:
                print("{}: {}".format(key, dense_map[key]))

        kwargs = {}
        kwargs['need_global_step'] = "0"
        kwargs["trainer_id"] = self.role_maker._role_id()
        kwargs["trainers"] = self.role_maker._worker_num()
549 550
        #if self.role_maker._is_heter_worker():
        #    kwargs["trainer_id"] += kwargs["trainers"]
T
tangwei12 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

        for table in server.servers[0].tables:
            if table.table_class == "BarrierTable":
                kwargs["barrier_table_id"] = table.id
                break

        if isinstance(self.async_strategy, SyncStrategy):
            sync_kwargs = sync_strategy_envs()
            kwargs.update(sync_kwargs)

        from paddle.fluid.communicator import Communicator, HeterClient
        self._communicator = Communicator(
            trainer_config.mode, kwargs,
            trainer_config.get_communicator_flags())
        self._communicator.init_with_ctx(send_ctx, dense_map, proto_txt,
                                         string_hosts, fluid.global_scope())

        dist_strategy = self.context["valid_strategy"]

        is_test = bool(int(os.getenv("TEST_MODE", "0")))

        if self.role_maker._is_first_worker(
        ) and self.role_maker._is_heter_parameter_server_mode:
            # for ps-heter mode load all parameters on first_worker
            init_params = self.compiled_strategy.get_the_one_recv_context(
                split_dense_table=True, use_origin_program=True)
        else:
            init_params = dense_map

Z
zhaocaibei123 已提交
580
        import paddle.distributed.fleet as fleet
T
tangwei12 已提交
581 582
        if not is_test:
            self._communicator.init_params(init_params)
Z
zhaocaibei123 已提交
583 584 585
            fleet.util.barrier()
        self._communicator.pull_dense(init_params)
        fleet.util.barrier()
T
tangwei12 已提交
586 587 588 589 590 591 592 593 594 595 596

        if not self._communicator.is_running():
            self._communicator.start()
        else:
            warnings.warn("communicator has been initialized, skip")

        launch_barrier = dist_strategy.a_sync_configs["launch_barrier"]
        launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1"))
        if launch_barrier and launch_barrier_flag:
            # for trainer wait server ready
            wait_server_ready(self.role_maker._get_pserver_endpoints())
597 598 599 600 601 602 603 604 605 606 607 608 609
            if self.role_maker._is_heter_parameter_server_mode and self.role_maker._get_next_trainers(
            ) != []:
                wait_server_ready(self.role_maker._get_next_trainers())
            if self.role_maker._is_heter_parameter_server_mode:
                previous_trainers = []
                if self.role_maker._get_previous_trainers() != []:
                    previous_trainers = self.role_maker._get_previous_trainers()
                next_trainers = []
                if self.role_maker._get_next_trainers() != []:
                    next_trainers = self.role_maker._get_next_trainers()
                self._heter_client = HeterClient(next_trainers,
                                                 previous_trainers,
                                                 self.role_maker._role_id())
T
tangwei12 已提交
610 611 612 613 614 615 616 617 618 619 620

    def _push_sparse_param(self,
                           var_name,
                           table_id=-1,
                           scope=fluid.global_scope()):
        self._communicator.push_sparse_param(var_name, table_id, scope)

    def _get_executor(self):
        executor = fluid.Executor(fluid.CPUPlace())
        if self.role_maker._is_heter_parameter_server_mode:
            if self.role_maker._is_heter_worker():
621 622 623 624 625
                heter_device_type = self.role_maker._heter_device_type().upper()
                if heter_device_type not in ["GPU", "XPU", "CPU"]:
                    raise ValueError("Heter Worker Not Support Device {}".
                                     format(device_type))
                if heter_device_type == "GPU":
T
tangwei12 已提交
626 627 628
                    executor = Executor(
                        fluid.CUDAPlace(
                            int(os.getenv("FLAGS_selected_gpus", "0"))))
629
                elif heter_device_type == "XPU":
T
tangwei12 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
                    executor = Executor(
                        fluid.XPUPlace(
                            int(os.getenv("FLAGS_selected_xpus", "0"))))
        return executor

    def _get_fleet_proto(self, is_server, is_sync):
        def _build_merge_accessor(ctx):
            accessor = Accessor()
            accessor.accessor_class = "CommMergeAccessor"
            accessor.optimizer = None

            if ctx.is_sparse():
                accessor.feature_dim = ctx.sections()[0]
                accessor.embedding_dim = ctx.sections()[1]
            else:
                accessor.feature_dim = ctx.sections()[0]
                accessor.embedding_dim = 1

            return accessor

        def _build_barrier_table(idx):
            table = Table()
            table.id = idx
            table.type = "PS_OTHER_TABLE"
            table.table_class = "BarrierTable"
            table.shard_num = 256

            accessor = Accessor()
            accessor.accessor_class = "CommMergeAccessor"
            accessor.optimizer = None
            accessor.feature_dim = 0
            accessor.embedding_dim = 0
            table.accessor = accessor

            common = CommonAccessor()
            common.table_name = "barrier_table"
            trainer_num = self.compiled_strategy.get_trainers()
            if self.role_maker._is_heter_parameter_server_mode:
                trainer_num += len(self.role_maker._get_heter_worker_endpoints(
                ))
            common.trainer_num = trainer_num
            common.attrs = ""
            common.dims = []
            common.params = []
            table.common = common
            return table

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
        def _build_tensor_table(idx, tensor_dict):
            table = Table()
            table.id = idx
            table.type = "PS_OTHER_TABLE"
            table.table_class = tensor_dict["tensor_table_class"]
            table.shard_num = 256

            accessor = Accessor()
            accessor.accessor_class = "CommMergeAccessor"
            accessor.optimizer = None
            accessor.feature_dim = 0
            accessor.embedding_dim = 0
            table.accessor = accessor

            common = CommonAccessor()
            common.table_name = tensor_dict["feed_var_name"]
            common.trainer_num = self.compiled_strategy.get_trainers()
            common.attrs = ""
            common.dims = []
            common.params = []
            table.common = common

            tensor = Tensor()
            tensor.main_program_id = tensor_dict["main_program_id"]
            tensor.startup_program_id = tensor_dict["startup_program_id"]
            tensor.feed_var_name = tensor_dict["feed_var_name"]
            tensor.fetch_var_name = tensor_dict["fetch_var_name"]
            tensor.tensor_table_class = tensor_dict["tensor_table_class"]
            table.tensor = tensor

            return table

        def _add_tensor_table(tables):
            tensor_table_dict = self.compiled_strategy.get_tensor_table_dict()
            program_idx = 0
            for table_name in tensor_table_dict:
                if tensor_table_dict[table_name]["startup_program"] != None:
                    tensor_table_dict[table_name][
                        "startup_program_id"] = program_idx
                    self._server_sub_program.append(tensor_table_dict[
                        table_name]["startup_program"].desc)
                    program_idx += 1
                if tensor_table_dict[table_name]["main_program"] != None:
                    tensor_table_dict[table_name][
                        "main_program_id"] = program_idx
                    self._server_sub_program.append(tensor_table_dict[
                        table_name]["main_program"].desc)
                    program_idx += 1
                # Todo: Hard code for lr_decay table apply table id
                new_table = _build_tensor_table(
                    len(tables), tensor_table_dict[table_name])
                tables.append(new_table)
            return tables

T
tangwei12 已提交
731 732 733 734 735
        def _get_tables():
            send_ctx = self.compiled_strategy.get_the_one_send_context(
                use_origin_program=True,
                split_dense_table=self.role_maker.
                _is_heter_parameter_server_mode)
T
tangwei12 已提交
736

737
            tables = []
T
tangwei12 已提交
738
            for idx, (name, ctx) in enumerate(send_ctx.items()):
T
tangwei12 已提交
739 740 741
                if ctx.is_tensor_table() or len(ctx.origin_varnames()) < 1:
                    continue

T
tangwei12 已提交
742 743
                table = Table()
                table.id = ctx.table_id()
T
tangwei12 已提交
744
                common = CommonAccessor()
745

T
tangwei12 已提交
746 747
                if ctx.is_sparse():
                    table.type = "PS_SPARSE_TABLE"
T
tangwei12 已提交
748
                    table.shard_num = 256
T
tangwei12 已提交
749

T
Thunderbrook 已提交
750 751 752
                    common.table_name = self.compiled_strategy.grad_name_to_param_name[
                        ctx.origin_varnames()[0]]

T
tangwei12 已提交
753 754 755
                    if self.compiled_strategy.is_geo_mode():
                        table.table_class = "SparseGeoTable"
                    else:
T
Thunderbrook 已提交
756 757
                        table.table_class = parse_table_class(
                            common.table_name, self.origin_main_program)
T
tangwei12 已提交
758 759

                else:
T
tangwei12 已提交
760 761 762
                    table.type = "PS_DENSE_TABLE"
                    table.table_class = "CommonDenseTable"
                    table.shard_num = 256
T
tangwei12 已提交
763 764 765 766 767 768 769 770
                    common.table_name = "MergedDense"

                common.parse_by_optimizer(ctx.origin_varnames()[0],
                                          ctx.is_sparse(),
                                          ctx.sections()[1] if ctx.is_sparse()
                                          else ctx.sections()[0],
                                          self.compiled_strategy)

T
tangwei12 已提交
771 772 773 774
                if ctx.is_sparse():
                    common.parse_entry(common.table_name,
                                       self.origin_main_program)

T
tangwei12 已提交
775 776 777 778 779 780 781 782 783
                if is_sync:
                    common.sync = "true"
                else:
                    common.sync = "false"

                table.common = common

                accessor = _build_merge_accessor(ctx)
                table.accessor = accessor
784 785 786 787 788 789 790 791
                tables.append(table)

            tensor_table_dict = self.compiled_strategy.get_tensor_table_dict()
            if len(tensor_table_dict) > 0:
                tables = _add_tensor_table(tables)
            else:
                empty_porgram = Program()
                self._server_sub_program.append(empty_porgram.desc)
T
tangwei12 已提交
792

793 794
            barrier_table = _build_barrier_table(len(tables))
            tables.append(barrier_table)
T
tangwei12 已提交
795 796 797 798 799 800 801
            return tables

        if is_server:
            server = Server()
            downpour_server = DownpourServer()

            service = Service()
T
Thunderbrook 已提交
802 803 804 805 806
            dist_strategy = self.context["valid_strategy"]
            use_ps_gpu = dist_strategy.a_sync_configs["use_ps_gpu"]
            if use_ps_gpu:
                service.server_class = "PsLocalServer"
                service.client_class = "PsLocalClient"
T
tangwei12 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
            downpour_server.set_service_param(service)

            tables = _get_tables()
            downpour_server.tables = tables
            server.add_server(downpour_server)
            return server
        else:
            worker = Worker()
            downpour_worker = DownpourWorker()

            tables = _get_tables()
            downpour_worker.tables = tables
            worker.add_worker(downpour_worker)
            return worker

    def _init_server(self, dirname=None, var_names=None, **kwargs):
        role_id = self.compiled_strategy.get_role_id()
        endpoints = self.compiled_strategy.get_ps_endpoints()
        is_sync = self.compiled_strategy.is_sync_mode()
T
tangwei12 已提交
826
        trainers = self.compiled_strategy.get_trainers()
827 828
        if self.role_maker._is_heter_parameter_server_mode:
            trainers += len(self.role_maker._get_heter_worker_endpoints())
T
tangwei12 已提交
829 830 831
        server = self._get_fleet_proto(is_server=True, is_sync=is_sync)
        proto_txt = str(server)

T
tangwei12 已提交
832
        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
T
tangwei12 已提交
833 834 835 836 837 838 839 840 841 842
        if debug:
            print("server: \n{}".format(proto_txt))

        string_hosts = []
        for idx, ep in enumerate(endpoints):
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            string_hosts.append(pshost.serialize_to_string())

        self._server = fluid.core.DistFleetWrapper()
T
tangwei12 已提交
843
        self._server.init_server(proto_txt, string_hosts, role_id, trainers,
844
                                 self._server_sub_program)
T
tangwei12 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875

        from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames

        dist_varnames = get_sparse_tablenames(self.origin_main_program, True)
        sparse_varnames = get_sparse_tablenames(self.origin_main_program, False)

        distributed_varnames = dist_varnames + sparse_varnames

        if var_names is None:
            load_varnames = distributed_varnames
        else:
            for var_name in var_names:
                if var_name not in distributed_varnames:
                    raise ValueError(
                        "fleet.init server can only load sparse variables in {}".
                        format(distributed_varnames))
            load_varnames = var_names

        if dirname is None or not load_varnames:
            return

        sparse_table_maps = {}
        for table in server.servers[0].tables:
            if table.type == "PS_SPARSE_TABLE" and table.common is not None:
                sparse_table_maps[table.common.table_name] = table.id

        dirname = os.path.normpath(dirname)
        pserver_id = self.role_maker._role_id()

        for var_name in load_varnames:
            table_id = sparse_table_maps[var_name]
876 877 878 879 880
            # path = os.path.join(dirname, var_name + PSERVER_SAVE_SUFFIX,
            #                     "{}.block{}.txt".format(var_name, pserver_id))
            # meta = os.path.join(dirname, var_name + PSERVER_SAVE_SUFFIX,
            #                     "{}.block{}.meta".format(var_name, pserver_id))
            self._server.load_sparse(dirname, "0", table_id)
T
tangwei12 已提交
881 882 883 884 885 886 887 888

    def _run_server(self):
        ep = self.compiled_strategy.get_ps_endpoint()
        host, port = ep.split(":")
        self._server.run_server(host, int(port))

    def _init_heter_worker(self):
        executor = self._get_executor()
889 890 891 892
        startup_program = fluid.default_startup_program()
        #real_startup_program = startup_program._heter_pipeline_opt[
        #    "startup_program"]
        executor.run(startup_program)
T
tangwei12 已提交
893 894
        self._init_worker()

895 896 897 898 899 900 901 902 903
    def _run_heter_worker(self,
                          dataset=None,
                          scope=None,
                          thread=0,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
T
tangwei12 已提交
904
        executor = self._get_executor()
905
        # dataset is not needed for heter worker
906 907
        executor.train_from_dataset(
            program=fluid.default_main_program(),
908
            dataset=None,
909 910 911 912
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
T
tangwei12 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944

    def _stop_worker(self):
        self._communicator.stop()
        if self.role_maker._is_heter_parameter_server_mode and self.role_maker._is_worker(
        ):
            self._heter_client.stop()
        executor = self._get_executor()
        executor.close()

    @staticmethod
    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False

            from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts

            origin_varname, _, _ = _get_varname_parts(var.name)
            if origin_varname.endswith("@GRAD"):
                return False

            if origin_varname == "learning_rate_0":
                return False

            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

945 946 947 948 949
    def _save_sparse_params(self, executor, dirname, context, main_program,
                            mode):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames
        distributed_varnames = get_sparse_tablenames(
            self.compiled_strategy.origin_main_program, True)
T
tangwei12 已提交
950 951
        values = []
        for id, names in context.items():
T
tangwei12 已提交
952
            if names[0] not in distributed_varnames:
953 954 955 956
                # only save sparse param to local
                self._worker.recv_and_save_model(id, dirname)
            # save sparse & distributed param on server
            self._worker.save_one_model(id, dirname, mode)
T
tangwei12 已提交
957 958 959
            values.extend(names)
        return values

960 961 962 963 964
    def _save_distributed_persistables(self,
                                       executor,
                                       dirname,
                                       main_program,
                                       mode=0):
T
tangwei12 已提交
965 966 967 968 969 970 971 972 973 974

        denses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=True,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)
        sparses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=False,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)

975 976
        sparse_varnames = self._save_sparse_params(executor, dirname, sparses,
                                                   main_program, mode)
T
tangwei12 已提交
977 978 979 980 981

        recv_dense_varnames = []
        for id, names in denses.items():
            recv_dense_varnames.extend(names)

982
        saved_varnames = sparse_varnames
T
tangwei12 已提交
983 984 985 986 987 988

        remaining_vars = list(
            filter(
                TheOnePSRuntime.__exclude_vars(saved_varnames),
                main_program.list_vars()))

989 990
        self._communicator.pull_dense(denses)

T
tangwei12 已提交
991 992
        import paddle
        for var in remaining_vars:
993 994
            if var.name not in recv_dense_varnames:
                continue
T
tangwei12 已提交
995 996 997
            tensor = var.get_value()
            paddle.save(
                tensor, os.path.join(dirname, var.name), use_binary_format=True)
T
tangwei12 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

    def _ps_inference_save_persistables(self,
                                        executor,
                                        dirname,
                                        main_program=None,
                                        mode=0,
                                        **kwargs):
        """
        This function filters out all variables with `persistable==True` from the
        give `main_program` and then saves these variables to the folder `dirname`
        or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
T
tangwei12 已提交
1018
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
T
tangwei12 已提交
1019 1020 1021 1022
            )

        if not isinstance(executor, Executor):
            raise TypeError(
T
tangwei12 已提交
1023
                "in fleet.save() function, executor must be as Executor type")
T
tangwei12 已提交
1024 1025 1026 1027 1028 1029

        if main_program is None:
            main_program = self.compiled_strategy.get_origin_ps_main_program()

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
T
tangwei12 已提交
1030
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
T
tangwei12 已提交
1031 1032
            )

1033
        # Todo(MrChengmo): Save optimizer status
T
tangwei12 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042
        self._save_distributed_persistables(executor, dirname, main_program,
                                            mode)

    def _ps_inference_save_inference_model(self,
                                           executor,
                                           dirname,
                                           feeded_var_names,
                                           target_vars,
                                           main_program=None,
1043 1044
                                           export_for_deployment=True,
                                           mode=0):
T
tangwei12 已提交
1045 1046 1047 1048 1049 1050 1051
        """
        Prune the given `main_program` to build a new program especially for inference,
        and then save it and all related parameters to given `dirname` by the `executor`.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
T
tangwei12 已提交
1052
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
T
tangwei12 已提交
1053 1054 1055 1056
            )

        if not isinstance(executor, Executor):
            raise TypeError(
T
tangwei12 已提交
1057 1058 1059 1060 1061 1062 1063 1064
                "in fleet.save() function, executor must be as Executor type")

        import paddle
        program = self.origin_main_program if main_program is None else main_program

        if isinstance(program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
T
tangwei12 已提交
1065 1066
            )

T
tangwei12 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
        feed_vars = [
            program.global_block().var(name) for name in feeded_var_names
        ]

        infer_program = paddle.static.normalize_program(program, feed_vars,
                                                        target_vars)

        infer_program._copy_dist_param_info_from(program)

        model_basename = "__model__"
        model_basename = os.path.join(dirname, model_basename)
        paddle.save(infer_program, model_basename)

        self._ps_inference_save_persistables(executor, dirname, infer_program,
                                             mode)
T
tangwei12 已提交
1082 1083 1084 1085 1086 1087

    def _save_inference_model(self, *args, **kwargs):
        self._ps_inference_save_inference_model(*args, **kwargs)

    def _save_persistables(self, *args, **kwargs):
        self._ps_inference_save_persistables(*args, **kwargs)
1088

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
    def _load_sparse_params(self, dirname, context, main_program, mode):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames
        distributed_varnames = get_sparse_tablenames(
            self.compiled_strategy.origin_main_program, True)
        values = []
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # TODO: only load sparse param from local
                warnings.warn("varname is not in distributed_varnames, pass")
            # load sparse & distributed param on server
            self._worker.load_one_table(id, dirname, mode)
            values.extend(names)
        return values

    def _load_distributed_persistables(self, dirname, main_program=None,
                                       mode=0):
        if main_program is None:
            main_program = self.compiled_strategy.get_origin_ps_main_program()

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        denses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=True,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)
        sparses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=False,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)

        sparse_varnames = self._load_sparse_params(dirname, sparses,
                                                   main_program, mode)

        recv_dense_varnames = []
        for id, names in denses.items():
            recv_dense_varnames.extend(names)

        loaded_varnames = sparse_varnames

        remaining_vars = list(
            filter(
                TheOnePSRuntime.__exclude_vars(loaded_varnames),
                main_program.list_vars()))

        import paddle
        for var in remaining_vars:
            if var.name not in recv_dense_varnames:
                continue
            tensor = paddle.load(os.path.join(dirname, var.name))
            var.set_value(tensor)

        self._communicator.init_params(denses)

T
Thunderbrook 已提交
1145
    def load_model(self, path, mode):
1146
        self._load_distributed_persistables(path, mode=mode)
T
Thunderbrook 已提交
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
    def _shrink(self, threshold):
        import paddle.distributed.fleet as fleet
        fleet.util.barrier()
        if self.role_maker._is_first_worker():
            sparses = self.compiled_strategy.get_the_one_recv_context(
                is_dense=False,
                split_dense_table=self.role_maker.
                _is_heter_parameter_server_mode,
                use_origin_program=True)

            for id, names in sparses.items():
                self._worker.shrink_sparse_table(id, threshold)
        fleet.util.barrier()