test_stack_op.py 10.2 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
17
import paddle
18
import paddle.fluid as fluid
19
from op_test import OpTest, convert_float_to_uint16
20
from paddle.fluid.framework import Program, program_guard
X
Xin Pan 已提交
21

22 23
paddle.enable_static()

X
Xin Pan 已提交
24 25 26 27 28 29

class TestStackOpBase(OpTest):
    def initDefaultParameters(self):
        self.num_inputs = 4
        self.input_dim = (5, 6, 7)
        self.axis = 0
30
        self.dtype = 'float64'
X
Xin Pan 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44

    def initParameters(self):
        pass

    def get_x_names(self):
        x_names = []
        for i in range(self.num_inputs):
            x_names.append('x{}'.format(i))
        return x_names

    def setUp(self):
        self.initDefaultParameters()
        self.initParameters()
        self.op_type = 'stack'
45
        self.python_api = paddle.stack
X
Xin Pan 已提交
46 47 48
        self.x = []
        for i in range(self.num_inputs):
            self.x.append(
49 50
                np.random.random(size=self.input_dim).astype(self.dtype)
            )
X
Xin Pan 已提交
51 52 53 54 55 56 57 58 59 60 61

        tmp = []
        x_names = self.get_x_names()
        for i in range(self.num_inputs):
            tmp.append((x_names[i], self.x[i]))

        self.inputs = {'X': tmp}
        self.outputs = {'Y': np.stack(self.x, axis=self.axis)}
        self.attrs = {'axis': self.axis}

    def test_check_output(self):
62
        self.check_output(check_eager=True)
X
Xin Pan 已提交
63 64

    def test_check_grad(self):
65
        self.check_grad(self.get_x_names(), 'Y', check_eager=True)
X
Xin Pan 已提交
66 67 68 69


class TestStackOp1(TestStackOpBase):
    def initParameters(self):
70
        self.num_inputs = 8
X
Xin Pan 已提交
71 72 73 74


class TestStackOp2(TestStackOpBase):
    def initParameters(self):
75
        self.num_inputs = 10
X
Xin Pan 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97


class TestStackOp3(TestStackOpBase):
    def initParameters(self):
        self.axis = -1


class TestStackOp4(TestStackOpBase):
    def initParameters(self):
        self.axis = -4


class TestStackOp5(TestStackOpBase):
    def initParameters(self):
        self.axis = 1


class TestStackOp6(TestStackOpBase):
    def initParameters(self):
        self.axis = 3


98 99 100 101 102
class TestStackOp_ZeroDim(TestStackOpBase):
    def initParameters(self):
        self.input_dim = ()


103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
class TestStackBF16Op(OpTest):
    def initDefaultParameters(self):
        self.num_inputs = 4
        self.input_dim = (5, 6, 7)
        self.axis = 0
        self.dtype = np.uint16

    def initParameters(self):
        pass

    def get_x_names(self):
        x_names = []
        for i in range(self.num_inputs):
            x_names.append('x{}'.format(i))
        return x_names

    def setUp(self):
        self.initDefaultParameters()
        self.initParameters()
        self.op_type = 'stack'
123
        self.python_api = paddle.stack
124 125 126
        self.x = []
        for i in range(self.num_inputs):
            self.x.append(
127 128
                np.random.random(size=self.input_dim).astype(np.float32)
            )
129 130 131 132 133 134 135 136 137 138 139 140 141

        out = np.stack(self.x, axis=self.axis)

        tmp = []
        x_names = self.get_x_names()
        for i in range(self.num_inputs):
            tmp.append((x_names[i], convert_float_to_uint16(self.x[i])))

        self.inputs = {'X': tmp}
        self.outputs = {'Y': convert_float_to_uint16(out)}
        self.attrs = {'axis': self.axis}

    def test_check_output(self):
142
        self.check_output(check_eager=True)
143 144

    def test_check_grad(self):
145
        self.check_grad(self.get_x_names(), 'Y', check_eager=True)
146 147


148 149 150 151 152 153 154 155 156 157
class TestStackAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test stack api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
158 159 160 161 162
        self.place = (
            fluid.CUDAPlace(0)
            if fluid.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        self.set_program()

    def set_program(self):
        self.program = fluid.Program()
        with fluid.program_guard(self.program):
            input = fluid.layers.assign(self.x)
            tensor_array = fluid.layers.create_array(dtype='float32')
            zero = fluid.layers.fill_constant(shape=[1], value=0, dtype="int64")

            for i in range(self.iter_num):
                fluid.layers.array_write(input, zero + i, tensor_array)

            self.out_var = fluid.layers.stack(tensor_array, axis=self.axis)

    def test_case(self):
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
181
        np.testing.assert_array_equal(
182 183
            res[0], np.stack([self.x] * self.iter_num, axis=self.axis)
        )
184 185


186 187 188 189 190 191 192 193 194 195
class TestTensorStackAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test stack api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
196 197 198 199 200
        self.place = (
            fluid.CUDAPlace(0)
            if fluid.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        self.set_program()

    def set_program(self):
        self.program = fluid.Program()
        with fluid.program_guard(self.program):
            input = fluid.layers.assign(self.x)
            tensor_array = fluid.layers.create_array(dtype='float32')
            zero = fluid.layers.fill_constant(shape=[1], value=0, dtype="int64")

            for i in range(self.iter_num):
                fluid.layers.array_write(input, zero + i, tensor_array)

            self.out_var = paddle.stack(tensor_array, axis=self.axis)

    def test_case(self):
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
219
        np.testing.assert_array_equal(
220 221
            res[0], np.stack([self.x] * self.iter_num, axis=self.axis)
        )
222 223 224 225 226 227 228 229 230 231 232 233 234 235


class API_test(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[1, 2], dtype='float64')
            data2 = fluid.layers.data('data2', shape=[1, 2], dtype='float64')
            data3 = fluid.layers.data('data3', shape=[1, 2], dtype='float64')
            result_stack = paddle.stack([data1, data2, data3], axis=0)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 2]).astype('float64')
            input2 = np.random.random([1, 2]).astype('float64')
            input3 = np.random.random([1, 2]).astype('float64')
236 237 238 239
            (result,) = exe.run(
                feed={"data1": input1, "data2": input2, "data3": input3},
                fetch_list=[result_stack],
            )
240
            expected_result = np.stack([input1, input2, input3], axis=0)
241
            np.testing.assert_allclose(expected_result, result, rtol=1e-05)
242

L
Leo Chen 已提交
243 244 245 246 247
    def test_single_tensor_error(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = paddle.rand([2, 3])
            self.assertRaises(TypeError, paddle.stack, x)

248 249 250 251 252 253 254 255 256 257

class API_DygraphTest(unittest.TestCase):
    def test_out(self):
        data1 = np.array([[1.0, 2.0]])
        data2 = np.array([[3.0, 4.0]])
        data3 = np.array([[5.0, 6.0]])
        with fluid.dygraph.guard():
            x1 = fluid.dygraph.to_variable(data1)
            x2 = fluid.dygraph.to_variable(data2)
            x3 = fluid.dygraph.to_variable(data3)
L
Leo Chen 已提交
258
            result = paddle.stack([x1, x2, x3])
259
            result_np = result.numpy()
L
Leo Chen 已提交
260
        expected_result = np.stack([data1, data2, data3])
261
        np.testing.assert_allclose(expected_result, result_np, rtol=1e-05)
262 263 264

        with fluid.dygraph.guard():
            y1 = fluid.dygraph.to_variable(data1)
L
Leo Chen 已提交
265
            result = paddle.stack([y1], axis=0)
266
            result_np_2 = result.numpy()
L
Leo Chen 已提交
267
        expected_result_2 = np.stack([data1], axis=0)
268
        np.testing.assert_allclose(expected_result_2, result_np_2, rtol=1e-05)
269

L
Leo Chen 已提交
270 271 272 273 274
    def test_single_tensor_error(self):
        with fluid.dygraph.guard():
            x = paddle.to_tensor([1, 2, 3])
            self.assertRaises(Exception, paddle.stack, x)

275

276 277 278 279 280 281 282 283 284
class TestStackOpWithNegativeShape(unittest.TestCase):
    def test_out(self):
        main_prg, startup_prg = Program(), Program()
        with program_guard(main_prg, startup_prg):
            b = paddle.static.data(name='b', shape=[-1], dtype='int64')
            e = paddle.static.data(name='e', shape=[3], dtype='int64')
            k = paddle.stack([b, e], axis=0)
            exe = paddle.static.Executor()
            exe.run(startup_prg)
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
            out = exe.run(
                main_prg,
                feed={
                    'b': np.ones(
                        [
                            3,
                        ]
                    ).astype("int64"),
                    'e': np.zeros(
                        [
                            3,
                        ]
                    ).astype("int64"),
                },
                fetch_list=[k],
            )
        np.testing.assert_allclose(
            out[0], np.array([[1, 1, 1], [0, 0, 0]]), rtol=1e-05
        )
304 305


306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
class TestStackAPI_ZeroDim(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})

        x1 = paddle.rand([])
        x2 = paddle.rand([])
        x1.stop_gradient = False
        x2.stop_gradient = False
        out = paddle.stack([x1, x2])
        out.backward()

        self.assertEqual(out.shape, [2])
        self.assertEqual(x1.grad.shape, [])
        self.assertEqual(x2.grad.shape, [])
        self.assertEqual(out.grad.shape, [2])

        paddle.enable_static()


X
Xin Pan 已提交
326 327
if __name__ == '__main__':
    unittest.main()