test_stack_op.py 10.1 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
17
import paddle
18
import paddle.fluid as fluid
19
from op_test import OpTest, convert_float_to_uint16
20
from paddle.fluid.framework import Program, program_guard
X
Xin Pan 已提交
21

22 23
paddle.enable_static()

X
Xin Pan 已提交
24 25

class TestStackOpBase(OpTest):
26

X
Xin Pan 已提交
27 28 29 30
    def initDefaultParameters(self):
        self.num_inputs = 4
        self.input_dim = (5, 6, 7)
        self.axis = 0
31
        self.dtype = 'float64'
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

    def initParameters(self):
        pass

    def get_x_names(self):
        x_names = []
        for i in range(self.num_inputs):
            x_names.append('x{}'.format(i))
        return x_names

    def setUp(self):
        self.initDefaultParameters()
        self.initParameters()
        self.op_type = 'stack'
46
        self.python_api = paddle.stack
X
Xin Pan 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
        self.x = []
        for i in range(self.num_inputs):
            self.x.append(
                np.random.random(size=self.input_dim).astype(self.dtype))

        tmp = []
        x_names = self.get_x_names()
        for i in range(self.num_inputs):
            tmp.append((x_names[i], self.x[i]))

        self.inputs = {'X': tmp}
        self.outputs = {'Y': np.stack(self.x, axis=self.axis)}
        self.attrs = {'axis': self.axis}

    def test_check_output(self):
62
        self.check_output(check_eager=True)
X
Xin Pan 已提交
63 64

    def test_check_grad(self):
65
        self.check_grad(self.get_x_names(), 'Y', check_eager=True)
X
Xin Pan 已提交
66 67 68


class TestStackOp1(TestStackOpBase):
69

X
Xin Pan 已提交
70
    def initParameters(self):
71
        self.num_inputs = 8
X
Xin Pan 已提交
72 73 74


class TestStackOp2(TestStackOpBase):
75

X
Xin Pan 已提交
76
    def initParameters(self):
77
        self.num_inputs = 10
X
Xin Pan 已提交
78 79 80


class TestStackOp3(TestStackOpBase):
81

X
Xin Pan 已提交
82 83 84 85 86
    def initParameters(self):
        self.axis = -1


class TestStackOp4(TestStackOpBase):
87

X
Xin Pan 已提交
88 89 90 91 92
    def initParameters(self):
        self.axis = -4


class TestStackOp5(TestStackOpBase):
93

X
Xin Pan 已提交
94 95 96 97 98
    def initParameters(self):
        self.axis = 1


class TestStackOp6(TestStackOpBase):
99

X
Xin Pan 已提交
100 101 102 103
    def initParameters(self):
        self.axis = 3


104 105 106 107 108 109
class TestStackOp_ZeroDim(TestStackOpBase):

    def initParameters(self):
        self.input_dim = ()


110
class TestStackBF16Op(OpTest):
111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    def initDefaultParameters(self):
        self.num_inputs = 4
        self.input_dim = (5, 6, 7)
        self.axis = 0
        self.dtype = np.uint16

    def initParameters(self):
        pass

    def get_x_names(self):
        x_names = []
        for i in range(self.num_inputs):
            x_names.append('x{}'.format(i))
        return x_names

    def setUp(self):
        self.initDefaultParameters()
        self.initParameters()
        self.op_type = 'stack'
131
        self.python_api = paddle.stack
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        self.x = []
        for i in range(self.num_inputs):
            self.x.append(
                np.random.random(size=self.input_dim).astype(np.float32))

        out = np.stack(self.x, axis=self.axis)

        tmp = []
        x_names = self.get_x_names()
        for i in range(self.num_inputs):
            tmp.append((x_names[i], convert_float_to_uint16(self.x[i])))

        self.inputs = {'X': tmp}
        self.outputs = {'Y': convert_float_to_uint16(out)}
        self.attrs = {'axis': self.axis}

    def test_check_output(self):
149
        self.check_output(check_eager=True)
150 151

    def test_check_grad(self):
152
        self.check_grad(self.get_x_names(), 'Y', check_eager=True)
153 154


155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
class TestStackAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test stack api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
        self.place = fluid.CUDAPlace(0) \
            if fluid.is_compiled_with_cuda() else fluid.CPUPlace()
        self.set_program()

    def set_program(self):
        self.program = fluid.Program()
        with fluid.program_guard(self.program):
            input = fluid.layers.assign(self.x)
            tensor_array = fluid.layers.create_array(dtype='float32')
            zero = fluid.layers.fill_constant(shape=[1], value=0, dtype="int64")

            for i in range(self.iter_num):
                fluid.layers.array_write(input, zero + i, tensor_array)

            self.out_var = fluid.layers.stack(tensor_array, axis=self.axis)

    def test_case(self):
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
185 186
        np.testing.assert_array_equal(
            res[0], np.stack([self.x] * self.iter_num, axis=self.axis))
187 188


189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
class TestTensorStackAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test stack api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
        self.place = fluid.CUDAPlace(0) \
            if fluid.is_compiled_with_cuda() else fluid.CPUPlace()
        self.set_program()

    def set_program(self):
        self.program = fluid.Program()
        with fluid.program_guard(self.program):
            input = fluid.layers.assign(self.x)
            tensor_array = fluid.layers.create_array(dtype='float32')
            zero = fluid.layers.fill_constant(shape=[1], value=0, dtype="int64")

            for i in range(self.iter_num):
                fluid.layers.array_write(input, zero + i, tensor_array)

            self.out_var = paddle.stack(tensor_array, axis=self.axis)

    def test_case(self):
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
219 220
        np.testing.assert_array_equal(
            res[0], np.stack([self.x] * self.iter_num, axis=self.axis))
221 222 223


class API_test(unittest.TestCase):
224

225 226 227 228 229 230 231 232 233 234 235
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[1, 2], dtype='float64')
            data2 = fluid.layers.data('data2', shape=[1, 2], dtype='float64')
            data3 = fluid.layers.data('data3', shape=[1, 2], dtype='float64')
            result_stack = paddle.stack([data1, data2, data3], axis=0)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 2]).astype('float64')
            input2 = np.random.random([1, 2]).astype('float64')
            input3 = np.random.random([1, 2]).astype('float64')
236 237 238 239 240 241
            result, = exe.run(feed={
                "data1": input1,
                "data2": input2,
                "data3": input3
            },
                              fetch_list=[result_stack])
242
            expected_result = np.stack([input1, input2, input3], axis=0)
243
            np.testing.assert_allclose(expected_result, result, rtol=1e-05)
244

L
Leo Chen 已提交
245 246 247 248 249
    def test_single_tensor_error(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = paddle.rand([2, 3])
            self.assertRaises(TypeError, paddle.stack, x)

250 251

class API_DygraphTest(unittest.TestCase):
252

253 254 255 256 257 258 259 260
    def test_out(self):
        data1 = np.array([[1.0, 2.0]])
        data2 = np.array([[3.0, 4.0]])
        data3 = np.array([[5.0, 6.0]])
        with fluid.dygraph.guard():
            x1 = fluid.dygraph.to_variable(data1)
            x2 = fluid.dygraph.to_variable(data2)
            x3 = fluid.dygraph.to_variable(data3)
L
Leo Chen 已提交
261
            result = paddle.stack([x1, x2, x3])
262
            result_np = result.numpy()
L
Leo Chen 已提交
263
        expected_result = np.stack([data1, data2, data3])
264
        np.testing.assert_allclose(expected_result, result_np, rtol=1e-05)
265 266 267

        with fluid.dygraph.guard():
            y1 = fluid.dygraph.to_variable(data1)
L
Leo Chen 已提交
268
            result = paddle.stack([y1], axis=0)
269
            result_np_2 = result.numpy()
L
Leo Chen 已提交
270
        expected_result_2 = np.stack([data1], axis=0)
271
        np.testing.assert_allclose(expected_result_2, result_np_2, rtol=1e-05)
272

L
Leo Chen 已提交
273 274 275 276 277
    def test_single_tensor_error(self):
        with fluid.dygraph.guard():
            x = paddle.to_tensor([1, 2, 3])
            self.assertRaises(Exception, paddle.stack, x)

278

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
class TestStackOpWithNegativeShape(unittest.TestCase):

    def test_out(self):
        main_prg, startup_prg = Program(), Program()
        with program_guard(main_prg, startup_prg):
            b = paddle.static.data(name='b', shape=[-1], dtype='int64')
            e = paddle.static.data(name='e', shape=[3], dtype='int64')
            k = paddle.stack([b, e], axis=0)
            exe = paddle.static.Executor()
            exe.run(startup_prg)
            out = exe.run(main_prg,
                          feed={
                              'b': np.ones([
                                  3,
                              ]).astype("int64"),
                              'e': np.zeros([
                                  3,
                              ]).astype("int64")
                          },
                          fetch_list=[k])
        np.testing.assert_allclose(out[0],
                                   np.array([[1, 1, 1], [0, 0, 0]]),
                                   rtol=1e-05)


304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
class TestStackAPI_ZeroDim(unittest.TestCase):

    def test_dygraph(self):
        paddle.disable_static()
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})

        x1 = paddle.rand([])
        x2 = paddle.rand([])
        x1.stop_gradient = False
        x2.stop_gradient = False
        out = paddle.stack([x1, x2])
        out.backward()

        self.assertEqual(out.shape, [2])
        self.assertEqual(x1.grad.shape, [])
        self.assertEqual(x2.grad.shape, [])
        self.assertEqual(out.grad.shape, [2])

        paddle.enable_static()


X
Xin Pan 已提交
325 326
if __name__ == '__main__':
    unittest.main()