pooling.py 63.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16
from ...fluid import core
17 18 19
from ...fluid.framework import in_dygraph_mode
from ...fluid.layers import utils, LayerHelper, unsqueeze, squeeze
from ...fluid.data_feeder import check_type, check_variable_and_dtype
20

21
__all__ = [
22
    'avg_pool1d',
23 24
    'avg_pool2d',
    'avg_pool3d',
25
    'max_pool1d',
26 27
    'max_pool2d',
    'max_pool3d',
28 29 30
    'adaptive_avg_pool1d',
    'adaptive_avg_pool2d',
    'adaptive_avg_pool3d',
31 32 33
    'adaptive_max_pool1d',
    'adaptive_max_pool2d',
    'adaptive_max_pool3d',
34 35 36
]


37 38 39 40 41
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
42
    if len(x.shape) != dimension:
43 44 45
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
                dimension, len(x.shape), type(x)))
46 47


48
def _check_instance(x, x_name, types=(int, float)):
49 50 51 52 53 54

    if not isinstance(x, types):
        raise ValueError("Excepted {} type for {} but received type: {}. ".
                         format(types, x_name, type(x)))


55 56 57
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
58
    else:
59
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
60 61


62 63 64 65
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
66 67


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NDHWC" else False
90 91


92 93 94 95 96 97 98 99 100
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            if ceil_mode != False:
101
                raise ValueError(
102 103 104 105 106 107 108 109 110 111 112 113 114 115
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
116
                raise ValueError(
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
137
    else:
138 139 140 141
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

142

143 144 145 146 147 148 149 150 151 152
def _expand_low_nd_padding(padding):
    #1d to 2d fake input
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
            "The size of padding's dimmention should be 1 or 2. But got padding={}".
            format(padding))
153 154 155 156 157 158 159
    return padding


def avg_pool1d(x,
               kernel_size,
               stride=None,
               padding=0,
160
               exclusive=True,
161 162
               ceil_mode=False,
               name=None):
D
Double_V 已提交
163
    """
164 165
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
166 167 168 169

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
170
                          `L` is the length of the feature. The data type is float32 or float64.
171
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
172
            it must contain an integer.
173
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
174 175 176 177 178 179 180 181
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
182
        exclusive (bool): Whether to exclude padding points in average pooling
183
                          mode, default is `True`.
184
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
185
            If it is set to False, the floor function will be used. The default value is False.
186 187 188 189 190 191 192 193 194
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
195 196
        ValueError: If `padding` is a list or tuple but its length is greater than 1.
        ShapeError: If the input is not a 3-D tensor.
197 198 199 200
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
C
Chen Long 已提交
201 202 203 204 205 206 207 208
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            out = F.avg_pool1d(data, kernel_size=2, stride=2, padding=0)
            # out shape: [1, 3, 16]
209 210 211
    """
    """NCL to NCHW"""
    data_format = "NCHW"
212 213
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
    _check_input(x, 3)
214
    x = unsqueeze(x, [2])
215
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
216 217 218 219 220 221 222
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

223 224 225
    channel_last = _channel_last("NCL", 1)
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, channel_last=channel_last, ceil_mode=ceil_mode)
226

227 228
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
229 230 231 232 233

    if in_dygraph_mode():
        output = core.ops.pool2d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'global_pooling',
            False, 'strides', stride, 'paddings', padding, 'padding_algorithm',
234
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
235
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
236
            data_format)
237 238 239 240
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
241
    dtype = helper.input_dtype(input_param_name='x')
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
258
            "exclusive": exclusive,
259 260 261 262 263 264
            "data_format": data_format,
        })

    return squeeze(pool_out, [2])


265
def avg_pool2d(x,
266 267 268 269
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
270
               exclusive=True,
271 272
               divisor_override=None,
               data_format="NCHW",
273 274
               name=None):
    """
275 276
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
277

278
    Args:
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
299
        exclusive (bool): Whether to exclude padding points in average pooling
300 301 302 303 304
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
305 306 307
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
308
    
309 310
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
311
    
312 313 314 315
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
316
    
317 318
    Examples:
        .. code-block:: python
C
Chen Long 已提交
319 320 321 322 323 324 325 326 327 328 329
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # avg pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
330
    """
331 332
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
333 334 335
    if stride is None:
        stride = kernel_size
    else:
336
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
337

338 339 340
    channel_last = _channel_last(data_format, 2)
    padding, padding_algorithm = _update_padding_nd(
        padding, 2, channel_last, ceil_mode=ceil_mode)
341 342

    if in_dygraph_mode():
343 344 345 346
        output = core.ops.pool2d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'global_pooling',
            False, 'padding_algorithm', padding_algorithm, 'strides', stride,
            'paddings', padding, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
347
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
348
            data_format)
349 350 351 352 353
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
354

355
    op_type = 'pool2d'
356
    helper = LayerHelper(op_type, **locals())
357
    dtype = helper.input_dtype(input_param_name='x')
358 359 360 361 362
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
363
        outputs={"Out": pool_out},
364
        attrs={
365
            "pooling_type": "avg",
366 367 368 369 370 371 372 373
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
374
            "exclusive": exclusive,
375 376 377
            "data_format": data_format,
        })

378 379 380 381 382
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
383 384


385 386 387 388 389
def avg_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
390
               exclusive=True,
391 392 393
               divisor_override=None,
               data_format="NCDHW",
               name=None):
394
    """
395 396
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
397 398

    Args:
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
417
        exclusive (bool): Whether to exclude padding points in average pooling
418 419 420 421 422
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
423
        name(str, optional): For detailed information, please refer
424 425
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
426
    
427
    Returns:
428
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
429
    
430
    Raises:
431 432 433
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
434
    
435 436
    Examples:
        .. code-block:: python
C
Chen Long 已提交
437
          
438
          import paddle
C
Chen Long 已提交
439 440
          import numpy as np

441 442 443 444 445 446 447 448
          x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
449
    """
450 451 452 453 454 455
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
456

457 458 459
    channel_last = _channel_last(data_format, 3)
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
460 461

    if in_dygraph_mode():
462 463 464 465
        output = core.ops.pool3d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'strides', stride,
            'paddings', padding, 'global_pooling', False, 'padding_algorithm',
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
466
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
467
            data_format)
468 469 470 471 472 473
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1] *
                             kernel_size[2]) / divisor_override
474

475 476
    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
477
    dtype = helper.input_dtype(input_param_name='x')
478 479
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}
480 481

    helper.append_op(
482
        type=op_type,
483 484 485
        inputs={"X": x},
        outputs=outputs,
        attrs={
486 487 488 489 490 491 492 493 494
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
495
            "exclusive": exclusive,
496
            "data_format": data_format,
497 498
        })

499 500 501 502 503 504
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1] *
                           kernel_size[2]) / divisor_override
505 506


507
def max_pool1d(x,
508 509 510
               kernel_size,
               stride=None,
               padding=0,
511
               return_mask=False,
512 513 514
               ceil_mode=False,
               name=None):
    """
515 516
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
517 518

    Args:
519 520 521
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
522
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
523
            it must contain an integer.
524
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
525 526 527 528 529 530 531 532
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
533
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
534 535
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
536 537 538 539 540
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
541

542 543 544
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
545
        ShapeError: If the input is not a 3-D tensor.
546
        ShapeError: If the output's shape calculated is not greater than 0.
547

548 549
    Examples:
        .. code-block:: python
550

551 552
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
553 554
          import numpy as np

555 556 557
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
558
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
559
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
560
    """
561 562 563 564 565 566
    """NCL to NCHW"""
    data_format = "NCHW"
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
567 568 569
    if stride is None:
        stride = kernel_size
    else:
570
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
571

572 573
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, ceil_mode=ceil_mode)
574

575 576
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
577 578

    if in_dygraph_mode():
579
        if return_mask:
D
Double_V 已提交
580 581 582 583 584 585
            pool_out = core.ops.max_pool2d_with_index(
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
586 587 588
            return (squeeze(pool_out[0], [2]),
                    squeeze(pool_out[1],
                            [2])) if return_mask else squeeze(pool_out[0], [2])
D
Double_V 已提交
589 590 591 592 593 594 595 596 597
        else:
            pool_out = core.ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return squeeze(pool_out, [2])

598
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
599
    helper = LayerHelper(op_type, **locals())
600
    dtype = helper.input_dtype(input_param_name='x')
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    pool_out = helper.create_variable_for_type_inference(dtype)
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": True,
            "data_format": data_format,
        })

623
    return (squeeze(pool_out, [2]),
624
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
625 626


627
def max_pool2d(x,
628 629 630
               kernel_size,
               stride=None,
               padding=0,
631
               return_mask=False,
632 633 634 635
               ceil_mode=False,
               data_format="NCHW",
               name=None):
    """
636 637
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool2d` .
638 639 640 641 642 643 644 645

    Args:
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
646
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
647 648
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
649
            it must contain two integers, (stride_Height, stride_Width).
650
            Otherwise, the pool stride size will be a square of an int.
651 652 653 654 655 656 657
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
658
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
659
        return_mask (bool): Whether to return the max indices along with the outputs. Default False, only support `"NCHW"` data format
660
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
661 662 663 664 665 666 667
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
668 669
   
   Raises:
670 671 672
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
673
    
674 675
    Examples:
        .. code-block:: python
676

C
Chen Long 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # max pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            # output.shape [1, 3, 16, 16]
            # for return_mask=True
            out, max_indices = F.max_pool2d(x,
                                               kernel_size=2,
                                               stride=2,
                                               padding=0,
                                               return_mask=True)
            # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
694
    """
695 696
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'max_pool2d')
697 698 699 700 701 702 703 704 705 706
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
707 708 709 710 711

    channel_last = True if data_format == "NHWC" else False

    padding, padding_algorithm = _update_padding_nd(
        padding, num_dims=2, channel_last=channel_last, ceil_mode=ceil_mode)
712

713
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
714
        raise ValueError(
715
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
716 717
        )

718
    if in_dygraph_mode():
719
        if return_mask:
D
Double_V 已提交
720 721 722 723 724 725
            output = core.ops.max_pool2d_with_index(
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
726
            return output if return_mask else output[0]
D
Double_V 已提交
727
        else:
D
Double_V 已提交
728 729 730 731 732 733 734
            output = core.ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
735

736
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
737
    helper = LayerHelper(op_type, **locals())
738
    dtype = helper.input_dtype(input_param_name='x')
739
    pool_out = helper.create_variable_for_type_inference(dtype)
740 741
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}
742 743 744 745

    helper.append_op(
        type=op_type,
        inputs={"X": x},
746
        outputs=outputs,
747
        attrs={
748
            "pooling_type": 'max',
749 750 751
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
752
            "paddings": padding,
753 754 755 756
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
757
            "exclusive": True,
758 759 760
            "data_format": data_format,
        })

761
    return (pool_out, mask) if return_mask else pool_out
762 763 764 765 766 767


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
768
               return_mask=False,
769 770 771 772
               ceil_mode=False,
               data_format="NCDHW",
               name=None):
    """
773 774
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
775 776
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
777
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
778
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
779
            is a tuple or list, it must contain three integers,
780
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
781
            Otherwise, the pool kernel size will be the cube of an int.
782 783
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
784
            Otherwise, the pool stride size will be a cube of an int.
785 786 787 788 789 790 791
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
792
        ceil_mode (bool): ${ceil_mode_comment}
793
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
794 795 796 797 798 799
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
800
    
801 802
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
803
    
804 805 806 807
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
808
    
809 810
    Examples:
        .. code-block:: python
811

C
Chen Long 已提交
812 813 814
            import paddle
            import paddle.nn.functional as F
            import numpy as np
815

C
Chen Long 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829
            # max pool3d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            output.shape [1, 3, 16, 16, 16]
            # for return_mask=True
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output, max_indices = paddle.nn.functional.max_pool3d(x,
                                          kernel_size = 2,
                                          stride = 2,
                                          padding=0,
                                          return_mask=True)
            # output.shape [None, 3, 16, 16, 16], max_indices.shape [None, 3, 16, 16, 16],
830 831 832 833 834 835 836 837
    """
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

838
    channel_last = _channel_last(data_format, 3)
839

840 841
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
842

843
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
844
        raise ValueError(
845
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
846 847
        )

848
    if in_dygraph_mode():
849
        if return_mask:
D
Double_V 已提交
850 851 852 853 854 855
            output = core.ops.max_pool3d_with_index(
                x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
856
            return output if return_mask else output[0]
D
Double_V 已提交
857
        else:
D
Double_V 已提交
858 859 860 861 862 863 864
            output = core.ops.pool3d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
865

866
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
867
    helper = LayerHelper(op_type, **locals())
868
    dtype = helper.input_dtype(input_param_name='x')
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
    pool_out = helper.create_variable_for_type_inference(dtype)
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": False,
            "data_format": data_format,
        })

891
    return (pool_out, mask) if return_mask else pool_out
892 893


894
def adaptive_avg_pool1d(x, output_size, name=None):
895
    """
896 897
    This API implements adaptive average pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
898

899
    Args:
900 901 902 903
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
904
        output_size (int): The target output size. It must be an integer.
905
        name(str, optional): For detailed information, please refer
906 907
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
908
    Returns:
909 910
            Tensor: The output tensor of adaptive average pooling result. The data type is same
                      as input tensor.
911
    Raises:
912
            ValueError: 'output_size' should be an integer.
913 914
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
915

916 917 918 919 920 921 922 923 924 925 926 927 928 929
              # average adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
930
              import numpy as np
931

932 933 934 935 936
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_average_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
    """
    pool_type = 'avg'
937 938
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'adaptive_pool2d')
939 940
    _check_input(x, 3)
    check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
941

942
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
943

944 945
    l_type = "pool2d"
    x = unsqueeze(x, [2])
946
    if in_dygraph_mode():
947 948 949
        pool_out = core.ops.pool2d(x, 'pooling_type', pool_type, 'ksize',
                                   pool_size, 'adaptive', True)
        return squeeze(pool_out, [2])
950

951
    helper = LayerHelper(l_type, **locals())
952
    dtype = helper.input_dtype(input_param_name='x')
953 954
    pool_out = helper.create_variable_for_type_inference(dtype)

955
    outputs = {"Out": pool_out}
956
    helper.append_op(
957
        type=l_type,
958 959 960
        inputs={"X": x},
        outputs=outputs,
        attrs={
961 962 963
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
964 965
        })

966
    return squeeze(pool_out, [2])
967 968


969 970
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
    """
971 972
    This API implements adaptive average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool2d` .
973 974 975

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
976
                          The data type can be float32 or float64.
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
992

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
1010

1011 1012 1013
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
1014
            out = paddle.nn.functional.adaptive_avg_pool2d(
1015 1016
                            x = x,
                            output_size=[3, 3])
1017
            # out.shape is [2, 3, 3, 3]
1018 1019
    """
    if not in_dygraph_mode():
1020
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1021
                                 'adaptive_avg_pool2d')
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
    check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1037
        output_size = list(output_size)
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
        output = core.ops.pool2d(x, 'pooling_type', 'avg', 'ksize', output_size,
                                 'global_pooling', False, 'adaptive', True,
                                 'data_format', data_format)
        return output

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1052
    dtype = helper.input_dtype(input_param_name='x')
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
    """
1073 1074
    This API implements adaptive average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool3d` .
1075 1076 1077

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1078
                          The data type can be float32, float64.
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
1118
            out = paddle.nn.functional.adaptive_avg_pool3d(
1119 1120
                            x = x,
                            output_size=[3, 3, 3])
1121
            # out.shape is [2, 3, 3, 3, 3]
1122 1123
    """
    if not in_dygraph_mode():
1124 1125
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool3d')
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
    check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1141
        output_size = list(output_size)
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
        output = core.ops.pool3d(x, 'pooling_type', 'avg', 'ksize', output_size,
                                 'global_pooling', False, 'adaptive', True,
                                 'data_format', data_format)
        return output

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
1158
    dtype = helper.input_dtype(input_param_name='x')
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out
1174 1175


1176
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
1177 1178 1179 1180 1181 1182 1183 1184 1185
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1186
        output_size (int): The pool kernel size. The value should be an integer.
1187
        return_mask (bool): If true, the index of max pooling point will be returned along
1188 1189 1190 1191 1192 1193 1194 1195
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
    Raises:
1196
            ValueError: 'output_size' should be an integer.
1197 1198
    Examples:
        .. code-block:: python
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
1214
              import numpy as np
1215

1216 1217 1218
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
1219
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
1220 1221 1222 1223 1224 1225
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
    check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                             'adaptive_max_pool1d')
    _check_input(x, 3)
1226
    check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
1227
    check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    l_type = 'max_pool2d_with_index'

    x = unsqueeze(x, [2])
    if in_dygraph_mode():
        pool_out = core.ops.max_pool2d_with_index(
            x, 'pooling_type', pool_type, 'ksize', pool_size, 'adaptive', True)
        return (squeeze(pool_out[0], [2]), squeeze(
1238
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
1239 1240

    helper = LayerHelper(l_type, **locals())
1241
    dtype = helper.input_dtype(input_param_name='x')
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

    return (squeeze(pool_out, [2]),
1258
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
1259 1260


1261
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
1262 1263 1264
    """
        This operation applies a 2D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
1265

1266 1267 1268
        Args:
            x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
1269
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1270
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1271

1272 1273
        Returns:
            Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
1274

1275 1276
        Examples:
            .. code-block:: python
1277

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
              # max adaptive pool2d
              # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
              # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         for j in range(n):
              #             hstart = floor(i * H / m)
              #             hend = ceil((i + 1) * H / m)
              #             wstart = floor(i * W / n)
              #             wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1295

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
              input_data = np.random.rand(2, 3, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool2d(
                            x = x,
                            output_size=[3, 3])
              # out.shape is [2, 3, 3, 3]
    """
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool2d')
    _check_input(x, 4)
    #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
1309
    check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
1310 1311 1312 1313 1314

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1315
        output_size = list(output_size)
1316 1317 1318 1319 1320 1321 1322 1323
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
        pool_out = core.ops.max_pool2d_with_index(
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1324
        return pool_out if return_mask else pool_out[0]
1325 1326 1327 1328

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
1329
    dtype = helper.input_dtype(input_param_name='x')
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })
1344
    #return (pool_out, mask) if return_mask else pool_out
1345 1346 1347
    return pool_out


1348
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
1349 1350 1351
    """
        This operation applies a 3D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
1352

1353 1354 1355
        Args:
            x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1356
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1357
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1358

1359 1360
        Returns:
            Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
1361

1362 1363
        Examples:
            .. code-block:: python
1364

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
              # adaptive max pool3d
              # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
              # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(l):
              #         for j in range(m):
              #             for k in range(n):
              #                 dstart = floor(i * D / l)
              #                 dend = ceil((i + 1) * D / l)
              #                 hstart = floor(i * H / m)
              #                 hend = ceil((i + 1) * H / m)
              #                 wstart = floor(i * W / n)
              #                 wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1385

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
              input_data = np.random.rand(2, 3, 8, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 8, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool3d(
                            x = x,
                            output_size=[3, 3, 3])
              # out.shape is [2, 3, 3, 3, 3]
    """

    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool3d')
    _check_input(x, 5)
    #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
1400
    check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
1401 1402 1403 1404 1405

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1406
        output_size = list(output_size)
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
        pool_out = core.ops.max_pool3d_with_index(
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1417
        return pool_out if return_mask else pool_out[0]
1418 1419 1420 1421

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
1422
    dtype = helper.input_dtype(input_param_name='x')
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })

1438
    return (pool_out, mask) if return_mask else pool_out