test_profiler.py 5.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import unittest
18
import os
19
import tempfile
20
import numpy as np
21 22 23 24
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.layers as layers
import paddle.fluid.core as core
25
import paddle.fluid.proto.profiler.profiler_pb2 as profiler_pb2
D
dangqingqing 已提交
26 27


28
class TestProfiler(unittest.TestCase):
29 30 31 32
    @classmethod
    def setUpClass(cls):
        os.environ['CPU_NUM'] = str(4)

33 34 35
    def net_profiler(self, state, use_parallel_executor=False):
        profile_path = os.path.join(tempfile.gettempdir(), "profile")
        open(profile_path, "w").write("")
36 37 38 39 40
        startup_program = fluid.Program()
        main_program = fluid.Program()

        with fluid.program_guard(main_program, startup_program):
            image = fluid.layers.data(name='x', shape=[784], dtype='float32')
X
Xin Pan 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
            hidden1 = fluid.layers.fc(input=image, size=64, act='relu')
            i = layers.zeros(shape=[1], dtype='int64')
            counter = fluid.layers.zeros(
                shape=[1], dtype='int64', force_cpu=True)
            until = layers.fill_constant([1], dtype='int64', value=10)
            data_arr = layers.array_write(hidden1, i)
            cond = fluid.layers.less_than(x=counter, y=until)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                hidden_n = fluid.layers.fc(input=hidden1, size=64, act='relu')
                layers.array_write(hidden_n, i, data_arr)
                fluid.layers.increment(x=counter, value=1, in_place=True)
                layers.less_than(x=counter, y=until, cond=cond)

            hidden_n = layers.array_read(data_arr, i)
            hidden2 = fluid.layers.fc(input=hidden_n, size=64, act='relu')
57 58 59
            predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
            label = fluid.layers.data(name='y', shape=[1], dtype='int64')
            cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
60
            avg_cost = fluid.layers.mean(cost)
F
fengjiayi 已提交
61 62 63
            batch_size = fluid.layers.create_tensor(dtype='int64')
            batch_acc = fluid.layers.accuracy(
                input=predict, label=label, total=batch_size)
64

65
        optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
66 67 68 69 70
        opts = optimizer.minimize(avg_cost, startup_program=startup_program)

        place = fluid.CPUPlace() if state == 'CPU' else fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        exe.run(startup_program)
71 72 73 74 75
        if use_parallel_executor:
            pe = fluid.ParallelExecutor(
                state != 'CPU',
                loss_name=avg_cost.name,
                main_program=main_program)
76

F
fengjiayi 已提交
77
        pass_acc_calculator = fluid.average.WeightedAverage()
F
fengjiayi 已提交
78
        with profiler.profiler(state, 'total', profile_path) as prof:
79 80 81 82 83
            for iter in range(10):
                if iter == 2:
                    profiler.reset_profiler()
                x = np.random.random((32, 784)).astype("float32")
                y = np.random.randint(0, 10, (32, 1)).astype("int64")
84

85 86 87
                if use_parallel_executor:
                    pe.run(feed={'x': x, 'y': y}, fetch_list=[avg_cost.name])
                    continue
88 89 90
                outs = exe.run(main_program,
                               feed={'x': x,
                                     'y': y},
F
fengjiayi 已提交
91
                               fetch_list=[avg_cost, batch_acc, batch_size])
92
                acc = np.array(outs[1])
F
fengjiayi 已提交
93 94 95
                b_size = np.array(outs[2])
                pass_acc_calculator.add(value=acc, weight=b_size)
                pass_acc = pass_acc_calculator.eval()
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        data = open(profile_path, 'rb').read()
        self.assertGreater(len(data), 0)
        profile_pb = profiler_pb2.Profile()
        profile_pb.ParseFromString(data)
        self.assertGreater(len(profile_pb.events), 0)
        for event in profile_pb.events:
            if event.type == profiler_pb2.Event.GPUKernel:
                if not event.detail_info and not event.name.startswith("MEM"):
                    raise Exception(
                        "Kernel %s missing event. Has this kernel been recorded by RecordEvent?"
                        % event.name)
            elif event.type == profiler_pb2.Event.CPU and (
                    event.name.startswith("Driver API") or
                    event.name.startswith("Runtime API")):
                print("Warning: unregister", event.name)
111

D
dangqingqing 已提交
112 113
    def test_cpu_profiler(self):
        self.net_profiler('CPU')
114
        self.net_profiler('CPU', use_parallel_executor=True)
115

116 117
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
D
dangqingqing 已提交
118 119
    def test_cuda_profiler(self):
        self.net_profiler('GPU')
120
        self.net_profiler('GPU', use_parallel_executor=True)
121

122 123
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
124
    def test_all_profiler(self):
125 126
        self.net_profiler('All')
        self.net_profiler('All', use_parallel_executor=True)
127

D
dangqingqing 已提交
128

129 130
if __name__ == '__main__':
    unittest.main()