test_profiler.py 5.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import unittest
18
import os
19
import tempfile
20
import numpy as np
21 22 23 24
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.layers as layers
import paddle.fluid.core as core
25
import paddle.fluid.proto.profiler.profiler_pb2 as profiler_pb2
D
dangqingqing 已提交
26 27


28
class TestProfiler(unittest.TestCase):
29 30 31
    def net_profiler(self, state, use_parallel_executor=False):
        profile_path = os.path.join(tempfile.gettempdir(), "profile")
        open(profile_path, "w").write("")
32 33 34 35 36
        startup_program = fluid.Program()
        main_program = fluid.Program()

        with fluid.program_guard(main_program, startup_program):
            image = fluid.layers.data(name='x', shape=[784], dtype='float32')
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
            hidden1 = fluid.layers.fc(input=image, size=64, act='relu')
            i = layers.zeros(shape=[1], dtype='int64')
            counter = fluid.layers.zeros(
                shape=[1], dtype='int64', force_cpu=True)
            until = layers.fill_constant([1], dtype='int64', value=10)
            data_arr = layers.array_write(hidden1, i)
            cond = fluid.layers.less_than(x=counter, y=until)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                hidden_n = fluid.layers.fc(input=hidden1, size=64, act='relu')
                layers.array_write(hidden_n, i, data_arr)
                fluid.layers.increment(x=counter, value=1, in_place=True)
                layers.less_than(x=counter, y=until, cond=cond)

            hidden_n = layers.array_read(data_arr, i)
            hidden2 = fluid.layers.fc(input=hidden_n, size=64, act='relu')
53 54 55
            predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
            label = fluid.layers.data(name='y', shape=[1], dtype='int64')
            cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
56
            avg_cost = fluid.layers.mean(cost)
F
fengjiayi 已提交
57 58 59
            batch_size = fluid.layers.create_tensor(dtype='int64')
            batch_acc = fluid.layers.accuracy(
                input=predict, label=label, total=batch_size)
60

61
        optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
62 63 64 65 66
        opts = optimizer.minimize(avg_cost, startup_program=startup_program)

        place = fluid.CPUPlace() if state == 'CPU' else fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        exe.run(startup_program)
67 68 69 70 71
        if use_parallel_executor:
            pe = fluid.ParallelExecutor(
                state != 'CPU',
                loss_name=avg_cost.name,
                main_program=main_program)
72

F
fengjiayi 已提交
73
        pass_acc_calculator = fluid.average.WeightedAverage()
F
fengjiayi 已提交
74
        with profiler.profiler(state, 'total', profile_path) as prof:
75 76 77 78 79
            for iter in range(10):
                if iter == 2:
                    profiler.reset_profiler()
                x = np.random.random((32, 784)).astype("float32")
                y = np.random.randint(0, 10, (32, 1)).astype("int64")
80

81 82 83
                if use_parallel_executor:
                    pe.run(feed={'x': x, 'y': y}, fetch_list=[avg_cost.name])
                    continue
84 85 86
                outs = exe.run(main_program,
                               feed={'x': x,
                                     'y': y},
F
fengjiayi 已提交
87
                               fetch_list=[avg_cost, batch_acc, batch_size])
88
                acc = np.array(outs[1])
F
fengjiayi 已提交
89 90 91
                b_size = np.array(outs[2])
                pass_acc_calculator.add(value=acc, weight=b_size)
                pass_acc = pass_acc_calculator.eval()
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        data = open(profile_path, 'rb').read()
        self.assertGreater(len(data), 0)
        profile_pb = profiler_pb2.Profile()
        profile_pb.ParseFromString(data)
        self.assertGreater(len(profile_pb.events), 0)
        for event in profile_pb.events:
            if event.type == profiler_pb2.Event.GPUKernel:
                if not event.detail_info and not event.name.startswith("MEM"):
                    raise Exception(
                        "Kernel %s missing event. Has this kernel been recorded by RecordEvent?"
                        % event.name)
            elif event.type == profiler_pb2.Event.CPU and (
                    event.name.startswith("Driver API") or
                    event.name.startswith("Runtime API")):
                print("Warning: unregister", event.name)
107

D
dangqingqing 已提交
108 109
    def test_cpu_profiler(self):
        self.net_profiler('CPU')
110
        self.net_profiler('CPU', use_parallel_executor=True)
111

112 113
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
D
dangqingqing 已提交
114 115
    def test_cuda_profiler(self):
        self.net_profiler('GPU')
116
        self.net_profiler('GPU', use_parallel_executor=True)
117

118 119
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "profiler is enabled only with GPU")
120
    def test_all_profiler(self):
121 122
        self.net_profiler('All')
        self.net_profiler('All', use_parallel_executor=True)
123

D
dangqingqing 已提交
124

125 126
if __name__ == '__main__':
    unittest.main()