transpose_op.cc 4.2 KB
Newer Older
X
xzl 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
xzl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
xzl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
xzl 已提交
14 15 16 17 18 19 20 21 22 23 24 25

#include "paddle/operators/transpose_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
27 28 29 30
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> axis = ctx->Attrs().Get<std::vector<int>>("axis");
X
xzl 已提交
31
    size_t x_rank = x_dims.size();
X
xzl 已提交
32
    size_t axis_size = axis.size();
X
xzl 已提交
33

X
xzl 已提交
34
    PADDLE_ENFORCE_EQ(x_rank, axis_size,
35
                      "The input tensor's rank(%d) "
36
                      "should be equal to the axis's size(%d)",
X
xzl 已提交
37
                      x_rank, axis_size);
38 39 40 41 42 43 44 45

    std::vector<int> count(axis_size, 0);
    for (size_t i = 0; i < axis_size; i++) {
      PADDLE_ENFORCE(
          axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1,
          "Each element of Attribute axis should be a unique value "
          "range from 0 to (dims - 1), "
          "where the dims is the axis's size");
X
xzl 已提交
46
    }
X
xzl 已提交
47

X
xzl 已提交
48
    framework::DDim out_dims(x_dims);
49
    for (size_t i = 0; i < axis_size; i++) {
X
xzl 已提交
50
      out_dims[i] = x_dims[axis[i]];
X
xzl 已提交
51
    }
Q
Qiao Longfei 已提交
52
    ctx->SetOutputDim("Out", out_dims);
X
xzl 已提交
53 54 55 56 57
  }
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
58
  TransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker)
X
xzl 已提交
59
      : OpProtoAndCheckerMaker(proto, op_checker) {
60
    AddInput(
X
xzl 已提交
61
        "X",
62 63
        "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
    AddOutput("Out", "(Tensor)The output tensor.");
X
xzl 已提交
64 65
    AddAttr<std::vector<int>>(
        "axis",
66 67 68
        "(vector<int>) A list of values, and the size of the list should be "
        "the same with the input tensor rank. This operator permutes the input "
        "tensor's axes according to the values given.");
X
xzl 已提交
69
    AddComment(R"DOC(
70 71
Transpose Operator.

72 73
The input tensor will be permuted according to the axes given.
The behavior of this operator is similar to how `numpy.transpose` works.
Y
ying 已提交
74

75 76 77 78 79 80
- suppose the input `X` is a 2-D tensor:
    $$
    X = \begin{pmatrix}
    0 &1 &2 \\
    3 &4 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
81

82
    the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)
W
wanghaoshuang 已提交
83

84
    then the output $Y$ is:
W
wanghaoshuang 已提交
85

86 87 88 89 90 91
    $$
    Y = \begin{pmatrix}
         0 &3 \\
         1 &4  \\
         2 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
92

93 94
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is 
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
95

X
xzl 已提交
96 97 98 99 100 101 102 103
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

104
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
105 106 107 108 109 110 111 112
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
X
xzl 已提交
113 114 115 116 117 118 119 120 121
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(transpose, ops::TransposeOp, ops::TransposeOpMaker, transpose_grad,
            ops::TransposeOpGrad);
Q
QI JUN 已提交
122 123
REGISTER_OP_CPU_KERNEL(
    transpose, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>);
X
xzl 已提交
124 125
REGISTER_OP_CPU_KERNEL(
    transpose_grad,
Q
QI JUN 已提交
126
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>);