transpose_op.cc 3.8 KB
Newer Older
X
xzl 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/transpose_op.h"
#include <vector>
#include "paddle/framework/ddim.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    auto in_dim = ctx.Input<Tensor>("X")->dims();
X
xzl 已提交
31
    auto axis = ctx.Attr<std::vector<int>>("axis");
X
xzl 已提交
32 33
    size_t in_dim_size = in_dim.size();
    size_t axis_size = axis.size();
X
xzl 已提交
34

X
xzl 已提交
35 36 37 38 39 40 41 42 43 44 45
    PADDLE_ENFORCE_EQ(
        in_dim_size, axis_size,
        "the input tensor dimensions should be equal to the axis size");

    std::vector<int> axis_sorted(axis);
    std::sort(axis_sorted.begin(), axis_sorted.end());
    for (size_t i = 0; i < axis_sorted.size(); i++) {
      PADDLE_ENFORCE_EQ(axis_sorted[i], (int)i,
                        "the sorted axis should be [0, 1, ... dims - 1], "
                        "the dims equals to the input tensor dimensions");
    }
X
xzl 已提交
46

X
xzl 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    framework::DDim out_dim(in_dim);
    for (size_t i = 0; i < axis.size(); i++) {
      out_dim[i] = in_dim[axis[i]];
    }
    ctx.Output<Tensor>("Out")->Resize(out_dim);
  }
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  TransposeOpMaker(framework::OpProto *proto,
                   framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "The input of transpose op");
    AddOutput("Out", "The output of transpose op");
    AddAttr<std::vector<int>>(
        "axis",
X
xzl 已提交
64 65 66
        "a list of values, and the size of the list should be "
        "the same with the input tensor dimensions, the tensor will "
        "permute the axes according the the values given");
X
xzl 已提交
67
    AddComment(R"DOC(
X
xzl 已提交
68 69
The Tensor will be permuted according to the axis values given.
For example, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
X
xzl 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
the output tensor shape will be (N, H, W, C)
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) should not be null");
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto out_grad_dims =
        ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
    auto out_dims = ctx.Input<Tensor>("Out")->dims();

    PADDLE_ENFORCE(out_grad_dims == out_dims,
                   "Out@GRAD dims must equal to Input(X) dims");

    x_grad->Resize(x_dims);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(transpose, ops::TransposeOp, ops::TransposeOpMaker, transpose_grad,
            ops::TransposeOpGrad);
REGISTER_OP_CPU_KERNEL(transpose,
                       ops::TransposeKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    transpose_grad,
    ops::TransposeGradKernel<paddle::platform::CPUPlace, float>);