ProcessGroupNCCL.cc 51.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
16

L
lilong12 已提交
17
#include "paddle/fluid/distributed/collective/Common.h"
18
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
L
LiYuRio 已提交
19
#include "paddle/phi/api/lib/utils/allocator.h"
20 21 22 23 24 25 26 27 28

DECLARE_bool(nccl_blocking_wait);
DECLARE_bool(use_stream_safe_cuda_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

29 30 31 32 33 34 35
ProcessGroupNCCL::NCCLTask::NCCLTask(const Place& place,
                                     int rank,
                                     CommType comm_type,
                                     bool sync_op,
                                     bool use_calc_stream)
    : TaskStream(rank, comm_type, sync_op, use_calc_stream),
      comm_event_(place),
W
Wen Sun 已提交
36
      task_place_(place) {}
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

ProcessGroupNCCL::NCCLTask::~NCCLTask() {}

bool ProcessGroupNCCL::NCCLTask::IsCompleted() { return comm_event_.Query(); }

void ProcessGroupNCCL::NCCLTask::UpdateWaitChain(
    const phi::DeviceContext& ctx) {
  comm_event_.Record(&ctx);
}

// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
  // Warning here when use calc stream but also invoke waiting explicitly.
  if (UseCalcStream()) {
    VLOG(3) << "Warning: The communication is on calc stream, wait here is "
               "useless.";
    return true;
  }

W
Wen Sun 已提交
56 57 58
  const auto* calc_ctx =
      platform::DeviceContextPool::Instance().Get(task_place_);
  comm_event_.Wait(platform::Place2DeviceType(task_place_), calc_ctx);
59 60 61 62 63 64

  if (FLAGS_nccl_blocking_wait) {
    // NOTE(shenliang03): It will block host for sync
    while (!IsCompleted()) {
      std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
    }
65
  }
66

W
Wen Sun 已提交
67
  if (IsBlockCPUInWait()) {
68 69 70 71 72 73 74 75
    // If we use the work to do barrier, we should block cpu
#ifdef PADDLE_WITH_CUDA
    PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
#else
    PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize());
#endif
  }
  return true;
76 77
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
// Same as Wait
void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); }

ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
                                   int rank,
                                   int size,
                                   const platform::Place& place,
                                   int gid)
    : ProcessGroupStream(rank, size, place, gid), store_(store) {
  platform::SetDeviceId(place_.device);
}

void ProcessGroupNCCL::GroupStart() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
}

void ProcessGroupNCCL::GroupEnd() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
}

const phi::DeviceContext& ProcessGroupNCCL::GetDeviceContext(
    const Place& place) const {
  return GetDeviceContext(place, /*use_calc_stream*/ false);
}

const phi::DeviceContext& ProcessGroupNCCL::GetDeviceContext(
    const Place& place, bool use_calc_stream) const {
  const std::string& key = GetKeyFromPlace(place);
  if (use_calc_stream) {
    const auto& iter = place_to_calc_ctx_.find(key);
    return *iter->second;
  } else {
    const auto& iter = place_to_comm_ctx_.find(key);
    PADDLE_ENFORCE_NE(
        iter,
        place_to_comm_ctx_.end(),
        platform::errors::NotFound(
            "Cannot find the device context in this process group."));
    return *iter->second;
  }
}

ncclComm_t ProcessGroupNCCL::NCCLComm(const Place& place) const {
  const std::string& key = GetKeyFromPlace(place);
  const auto& iter = place_to_comm_ctx_.find(key);
  PADDLE_ENFORCE_NE(
      iter,
      place_to_comm_ctx_.end(),
      platform::errors::NotFound(
          "Cannot find the NCCL commmunicator in this process group."));
  return iter->second->nccl_comm();
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllGather(
            input.data(),
            output->data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const AllreduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllReduce(
            input.data(),
            output->data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
      },
      CommType::ALLREDUCE,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
    const BarrierOptions& opts) {
  auto allocator = std::unique_ptr<phi::Allocator>(
      new paddle::experimental::DefaultAllocator(place_));
  phi::DenseTensorMeta meta(phi::DataType::FLOAT32, phi::DDim{1});
  phi::DenseTensor barrier_tensor{allocator.get(), meta};

  auto task = AllReduce(&barrier_tensor,
                        barrier_tensor,
                        {},
                        /*sync_op*/ true,
                        /*use_calc_stream*/ false);
  auto nccl_task = dynamic_cast<NCCLTask*>(task.get());
W
Wen Sun 已提交
196
  nccl_task->SetBlockCPUInWait();
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const BroadcastOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        int root = opts.source_rank + opts.source_root;
        return platform::dynload::ncclBroadcast(
            input.data(),
            output->data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
            stream);
      },
      CommType::BROADCAST,
      sync_op,
      use_calc_stream);
226 227
}

228
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
229
    const Place& place,
230 231 232 233 234
    int rank,
    CommType comm_type,
    bool is_sync,
    bool use_calc_stream) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
235
      place, rank, comm_type, is_sync, use_calc_stream);
236 237
}

238 239 240 241 242 243 244 245 246 247 248 249
void ProcessGroupNCCL::BroadcastUniqueNCCLID(ncclUniqueId* nccl_id) {
  const std::string key =
      "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/0";
  if (rank_ == 0) {
    std::vector<uint8_t> nccl_id_wrapper(
        reinterpret_cast<uint8_t*>(nccl_id),
        reinterpret_cast<uint8_t*>(nccl_id) + NCCL_UNIQUE_ID_BYTES);
    store_->set(key, nccl_id_wrapper);
  } else {
    const auto& nccl_id_wrapper = store_->get(key);
    std::memcpy(nccl_id, nccl_id_wrapper.data(), nccl_id_wrapper.size());
  }
250 251
}

252 253
void ProcessGroupNCCL::CreateNCCLEnvCache(const Place& place,
                                          const std::string& place_key) {
W
Wen Sun 已提交
254 255 256 257
  if (place_to_comm_ctx_.size() > 0) {
    VLOG(3) << "Warning: Tensors from multiple devices are not supported yet.";
  }

258 259 260 261 262
  ncclUniqueId nccl_id;
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
  BroadcastUniqueNCCLID(&nccl_id);
263

264 265 266
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << place_key
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);
267

268 269 270 271 272 273 274 275
  auto* calc_ctx = static_cast<phi::GPUContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  auto comm_ctx = std::make_unique<phi::GPUContext>(place);
  ncclComm_t nccl_comm;
  NCCLCHECK(platform::dynload::ncclCommInitRank(
      &nccl_comm, GetSize(), nccl_id, GetRank()));
  comm_ctx->set_nccl_comm(nccl_comm);

W
Wen Sun 已提交
276 277 278
  place_to_calc_event_.emplace(place_key, place);
  place_to_calc_ctx_.emplace(place_key, calc_ctx);
  place_to_comm_ctx_.emplace(place_key, std::move(comm_ctx));
279 280

  // TODO(sunyilun): for compatibility, will be removed later
W
Wen Sun 已提交
281 282 283
  std::vector<phi::GPUContext*> comm_ctx_wrapper{
      place_to_comm_ctx_[place_key].get()};
  places_to_ctx_.emplace(place_key, comm_ctx_wrapper);
284 285
}

W
Wen Sun 已提交
286
void ProcessGroupNCCL::SyncCalcStream(const Place& place) {
287
  const std::string& key = GetKeyFromPlace(place);
W
Wen Sun 已提交
288 289 290 291 292
  auto& calc_event = place_to_calc_event_.at(key);
  const auto* calc_ctx = place_to_calc_ctx_.at(key);
  const auto* comm_ctx = place_to_comm_ctx_.at(key).get();
  calc_event.Record(calc_ctx);
  calc_event.Wait(platform::Place2DeviceType(place), comm_ctx);
293 294
}

295 296 297 298 299 300 301 302 303 304 305
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    Fn fn,
    CommType comm_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& place = in_tensor.place();
  const auto& key = GetKeyFromPlace(place);

W
Wen Sun 已提交
306 307 308
  platform::CUDADeviceGuard cuda_guard(place);

  if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
309
    CreateNCCLEnvCache(place, key);
310 311
  }

312
  if (!use_calc_stream) {
W
Wen Sun 已提交
313
    SyncCalcStream(place);
314
  }
315

316 317
  auto task = CreateTask(place, rank_, comm_type, sync_op, use_calc_stream);

W
Wen Sun 已提交
318 319 320
  const auto* calc_ctx = place_to_calc_ctx_.at(key);
  const auto& comm_ctx = place_to_comm_ctx_.at(key);
  auto nccl_comm = comm_ctx->nccl_comm();
321
  auto nccl_stream = use_calc_stream ? calc_ctx->stream() : comm_ctx->stream();
W
Wen Sun 已提交
322
  fn(out_tensor, in_tensor, nccl_comm, nccl_stream);
323 324 325 326 327

  if (!use_calc_stream) {
    if (FLAGS_use_stream_safe_cuda_allocator) {
      memory::RecordStream(in_tensor.Holder(), nccl_stream);
    }
W
Wen Sun 已提交
328
    task->UpdateWaitChain(*comm_ctx);
329 330 331
  }

  return task;
332 333
}

334
void ProcessGroupNCCL::CheckSplitSizes(std::vector<int64_t>* split_sizes,
335
                                       std::vector<int64_t> tensor_shape) {
336
  int64_t len_size = (*split_sizes).size();
337 338 339 340 341 342
  if (len_size == 0) {
    PADDLE_ENFORCE_EQ(tensor_shape[0] % size_ == 0,
                      true,
                      platform::errors::InvalidArgument(
                          "Tensor's dim[0] must be divisible by group size "
                          "when split_sizes not given."));
343 344 345 346
    (*split_sizes)
        .insert((*split_sizes).end(),
                size_,
                static_cast<int64_t>(tensor_shape[0] / size_));
347 348 349 350 351 352 353
  } else {
    PADDLE_ENFORCE_EQ(
        len_size == size_,
        true,
        platform::errors::InvalidArgument(
            "The length of split_sizes must be equal to group size."));
    auto sum_size = std::accumulate(
354
        (*split_sizes).begin(), (*split_sizes).end(), static_cast<int64_t>(0));
355 356 357 358 359 360 361 362
    PADDLE_ENFORCE_EQ(
        sum_size == tensor_shape[0],
        true,
        platform::errors::InvalidArgument(
            "The sum of split_sizes must be equal to tensor's dim[0]."));
  }
}

363 364
// TODO(sunyilun): methods below will be removed later
void SyncDefaultStream(const std::vector<Place>& places,
W
Wen Sun 已提交
365
                       platform::DeviceEvent& nccl_event,         // NOLINT
366 367 368 369
                       std::vector<phi::GPUContext*>& dev_ctx) {  // NOLINT
  for (size_t i = 0; i < places.size(); ++i) {
    auto* default_ctx = static_cast<phi::GPUContext*>(
        platform::DeviceContextPool::Instance().Get(places[i]));
W
Wen Sun 已提交
370 371
    nccl_event.Record(default_ctx);
    nccl_event.Wait(platform::Place2DeviceType(places[i]), dev_ctx[i]);
B
Baibaifan 已提交
372
  }
373 374
}

375 376 377 378 379 380 381
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    std::vector<Place> places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs);
382
}
383

384 385 386 387 388 389 390 391 392
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    const std::vector<Place>& places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs,
    bool is_sync,
    bool use_calc_stream) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs, is_sync, use_calc_stream);
393 394
}

395 396 397 398 399 400 401
ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places,
    int rank,
    CommType CommType,
    const std::vector<phi::DenseTensor>& inputs)
    : TaskStream(rank, inputs, CommType),
      comm_event_(places[0]),
W
Wen Sun 已提交
402
      task_place_(places[0]) {}
403 404 405 406 407 408 409 410 411 412

ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs,
    bool sync_op,
    bool use_calc_stream)
    : TaskStream(rank, inputs, comm_type, sync_op, use_calc_stream),
      comm_event_(places[0]),
W
Wen Sun 已提交
413
      task_place_(places[0]) {}
414

415 416 417
// create NCCLManager cache for places_key
void ProcessGroupNCCL::CreateNCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
418 419
  PADDLE_ENFORCE_EQ(places_key.empty(),
                    false,
420 421 422 423
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the NCCL Communicator since "
                        "the GPU place are not known"));

424
  ncclUniqueId nccl_id;
425 426 427
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
428
  BroadcastUniqueNCCLID(&nccl_id);
429

430 431
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
432 433
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);

L
Leo Chen 已提交
434
  std::vector<std::unique_ptr<phi::GPUContext>> dev_ctx;
435 436
  dev_ctx.resize(places.size());

437 438 439
  std::vector<phi::GPUContext*> dev_ctx_raw;
  dev_ctx_raw.resize(places.size());

440 441 442 443
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());

  for (size_t i = 0; i < places.size(); ++i) {
    platform::CUDADeviceGuard guard(places[i]);
444

L
Leo Chen 已提交
445
    dev_ctx[i].reset(new phi::GPUContext(places[i]));
446 447 448 449 450
    ncclComm_t nccl_comm;
    NCCLCHECK(platform::dynload::ncclCommInitRank(
        &nccl_comm, GetSize(), nccl_id, GetRank()));
    dev_ctx[i]->set_nccl_comm(nccl_comm);
    dev_ctx_raw[i] = dev_ctx[i].get();
451 452 453 454
  }

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());

455
  // TODO(sunyilun): for compatibility, will be removed later
W
Wen Sun 已提交
456 457 458 459 460 461
  place_to_calc_event_.emplace(places_key, places[0]);
  place_to_calc_ctx_.emplace(
      places_key,
      static_cast<phi::GPUContext*>(
          platform::DeviceContextPool::Instance().Get(places[0])));
  place_to_comm_ctx_.emplace(places_key, std::move(dev_ctx[0]));
462 463

  // These caches will be useful to process sync/wait/communicate
464
  places_to_ctx_.emplace(places_key, std::move(dev_ctx_raw));
465 466
}

467 468 469 470 471 472 473 474 475 476 477 478 479
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType comm_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& places = GetPlaceList(inputs);
  const auto& key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
480
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
481 482 483 484
      CreateNCCLManagerCache(key, places);
    }
  }

485
  if (!use_calc_stream) {
W
Wen Sun 已提交
486 487
    SyncDefaultStream(
        places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
488
  }
489

490 491
  auto task =
      CreateTask(places, rank_, comm_type, inputs, sync_op, use_calc_stream);
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

  platform::CUDADeviceGuard cuda_guard;

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);

      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
W
Wen Sun 已提交
507
        nccl_stream = places_to_ctx_.at(key)[i]->stream();
508 509
      }

510 511
      fn(inputs[i],
         outputs[i],
W
Wen Sun 已提交
512
         places_to_ctx_.at(key)[i]->nccl_comm(),
513
         nccl_stream);
514 515 516 517 518 519 520 521 522 523 524 525 526 527
    }
  }

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);

      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
W
Wen Sun 已提交
528
        nccl_stream = places_to_ctx_.at(key)[i]->stream();
529 530 531 532 533 534 535 536 537 538
      }

      memory::RecordStream(inputs[i].Holder(), nccl_stream);
    }
  }

  // Adding stream event dependency only when use comm stream
  if (!use_calc_stream) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
539
      task->UpdateWaitChain(*places_to_ctx_.at(key)[i]);
540 541 542 543 544 545
    }
  }

  return task;
}

546 547
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
548
    std::vector<phi::DenseTensor>& inputs,
549 550 551
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType op_type) {
552 553 554 555 556
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
557
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
558 559 560 561
      CreateNCCLManagerCache(key, places);
    }
  }

W
Wen Sun 已提交
562 563
  SyncDefaultStream(
      places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
564 565 566 567 568 569

  auto task = CreateTask(places, rank_, op_type, inputs);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

S
ShenLiang 已提交
570 571
  {
    platform::NCCLGroupGuard nccl_guard;
572 573
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
574
      const auto& nccl_stream = places_to_ctx_.at(key)[i]->stream();
575 576
      fn(inputs[i],
         outputs[i],
W
Wen Sun 已提交
577
         places_to_ctx_.at(key)[i]->nccl_comm(),
578
         nccl_stream);
579 580 581
    }
  }

S
ShenLiang 已提交
582
  if (FLAGS_use_stream_safe_cuda_allocator) {
583 584
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
S
ShenLiang 已提交
585
      memory::RecordStream(inputs[i].Holder(),
W
Wen Sun 已提交
586
                           places_to_ctx_.at(key)[i]->stream());
587 588 589 590 591
    }
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
592
    task->UpdateWaitChain(*places_to_ctx_.at(key)[i]);
593 594 595 596
  }
  return task;
}

597 598
template <typename Fn>
void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
599 600
                                  phi::DenseTensor* out,
                                  Fn fn,
601 602 603
                                  CommType op_type) {
  std::vector<Place> places;
  places.push_back(in->place());
604
  const std::string& key = GetKeyFromPlaces(places);
605 606 607

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
608
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
609 610 611 612
      CreateNCCLManagerCache(key, places);
    }
  }

W
Wen Sun 已提交
613 614
  SyncDefaultStream(
      places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
615 616 617 618 619 620

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    cuda_guard.SetDevice(places[0]);
W
Wen Sun 已提交
621
    memory::RecordStream(in->Holder(), places_to_ctx_.at(key)[0]->stream());
622 623 624 625 626
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    cuda_guard.SetDevice(places[0]);
W
Wen Sun 已提交
627 628
    const auto& nccl_stream = places_to_ctx_.at(key)[0]->stream();
    fn(in, out, places_to_ctx_.at(key)[0]->nccl_comm(), nccl_stream);
629 630 631 632 633
  }

  cuda_guard.SetDevice(places[0]);
}

634 635 636 637 638 639 640 641 642 643 644 645 646
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
    CommType op_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& places = GetPlaceList(tensors);
  const auto& key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
647
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
648 649 650 651 652
      CreateNCCLManagerCache(key, places);
    }
  }

  if (!use_calc_stream) {
W
Wen Sun 已提交
653 654
    SyncDefaultStream(
        places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
655 656 657 658 659 660 661
  }

  auto task =
      CreateTask(places, rank_, op_type, tensors, sync_op, use_calc_stream);

  platform::CUDADeviceGuard cuda_guard;

662 663
  {
    platform::NCCLGroupGuard nccl_guard;
664 665 666 667 668 669 670 671 672
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
W
Wen Sun 已提交
673
        nccl_stream = places_to_ctx_.at(key)[i]->stream();
674
      }
675
      fn(tensors[i],
W
Wen Sun 已提交
676
         places_to_ctx_.at(key)[i]->nccl_comm(),
677 678
         nccl_stream,
         dst_rank);
679 680 681
    }
  }

682
  if (FLAGS_use_stream_safe_cuda_allocator) {
683 684 685 686 687 688 689 690 691
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
W
Wen Sun 已提交
692
        nccl_stream = places_to_ctx_.at(key)[i]->stream();
693
      }
694
      memory::RecordStream(tensors[i].Holder(), nccl_stream);
695 696 697 698 699 700
    }
  }

  if (!use_calc_stream) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
701
      task->UpdateWaitChain(*places_to_ctx_.at(key)[i]);
702 703 704 705 706 707
    }
  }

  return task;
}

B
Baibaifan 已提交
708 709
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
710 711 712
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
713
    CommType op_type) {
B
Baibaifan 已提交
714 715 716 717 718
  const auto places = GetPlaceList(tensors);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
W
Wen Sun 已提交
719
    if (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end()) {
B
Baibaifan 已提交
720 721 722 723
      CreateNCCLManagerCache(key, places);
    }
  }

W
Wen Sun 已提交
724 725
  SyncDefaultStream(
      places, place_to_calc_event_.at(key), places_to_ctx_.at(key));
B
Baibaifan 已提交
726 727 728 729 730 731

  auto task = CreateTask(places, rank_, op_type, tensors);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

732 733
  {
    platform::NCCLGroupGuard nccl_guard;
B
Baibaifan 已提交
734 735
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
736
      const auto& nccl_stream = places_to_ctx_.at(key)[i]->stream();
737
      fn(tensors[i],
W
Wen Sun 已提交
738
         places_to_ctx_.at(key)[i]->nccl_comm(),
739 740
         nccl_stream,
         dst_rank);
B
Baibaifan 已提交
741 742 743
    }
  }

744
  if (FLAGS_use_stream_safe_cuda_allocator) {
B
Baibaifan 已提交
745 746
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
747
      memory::RecordStream(tensors[i].Holder(),
W
Wen Sun 已提交
748
                           places_to_ctx_.at(key)[i]->stream());
B
Baibaifan 已提交
749 750 751 752 753
    }
  }

  for (size_t i = 0; i < tensors.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
W
Wen Sun 已提交
754
    task->UpdateWaitChain(*places_to_ctx_.at(key)[i]);
B
Baibaifan 已提交
755 756 757 758
  }
  return task;
}

759
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
760
    std::vector<phi::DenseTensor>& in_tensors,
761 762
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts) {
763
  PADDLE_ENFORCE_EQ(
764 765
      CheckTensorsInCudaPlace(in_tensors),
      true,
766
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
767
  return Collective(
768 769 770 771 772 773
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
774
        return platform::dynload::ncclAllReduce(
775 776 777
            input.data(),
            output.data(),
            input.numel(),
778
            platform::ToNCCLDataType(input.type()),
779 780 781
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
782 783
      },
      CommType::ALLREDUCE);
784 785 786
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
787
    std::vector<phi::DenseTensor>& in_tensors,
788 789
    std::vector<phi::DenseTensor>& out_tensors,
    const BroadcastOptions& opts) {
790
  PADDLE_ENFORCE_EQ(
791 792
      CheckTensorsInCudaPlace(in_tensors),
      true,
793 794
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

795
  return Collective(
796 797 798 799 800
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
801 802 803 804
          const gpuStream_t& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
        return platform::dynload::ncclBroadcast(
805 806 807 808 809 810 811
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
            stream);
812 813
      },
      CommType::BROADCAST);
814 815
}

816 817
void CheckTensorsInDifferentDevices(
    const std::vector<phi::DenseTensor>& tensors, const size_t num_devices) {
B
Baibaifan 已提交
818
  PADDLE_ENFORCE_EQ(
819 820
      tensors.size() == 0,
      false,
B
Baibaifan 已提交
821 822
      platform::errors::InvalidArgument("Tensor list must be nonempty."));
  PADDLE_ENFORCE_LE(
823 824
      tensors.size(),
      num_devices,
B
Baibaifan 已提交
825 826 827 828 829 830
      platform::errors::InvalidArgument(
          "Tensor list mustn't be larger than the number of available GPUs."));

  std::set<Place> used_devices;

  for (const auto& t : tensors) {
831 832
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(t.place()),
                      true,
B
Baibaifan 已提交
833 834 835
                      platform::errors::InvalidArgument(
                          "Tensors must be CUDA and dense tensor."));

836
    const auto inserted = used_devices.insert(t.place()).second;
837 838
    PADDLE_ENFORCE_EQ(inserted,
                      true,
B
Baibaifan 已提交
839 840 841 842 843 844
                      platform::errors::InvalidArgument(
                          "Tensors must be on distinct GPU devices."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
845
    std::vector<phi::DenseTensor>& tensors, int dst_rank) {
B
Baibaifan 已提交
846 847
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

848 849
  auto task = PointToPoint(
      tensors,
850 851 852
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
853 854
          int dst_rank) {
        return platform::dynload::ncclSend(
855 856 857 858 859 860
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
861
      },
862 863
      dst_rank,
      CommType::SEND);
B
Baibaifan 已提交
864 865 866
  return task;
}

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
    std::vector<phi::DenseTensor>& tensors,
    int dst_rank,
    bool sync_op,
    bool use_calc_stream) {
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  auto task = PointToPoint(
      tensors,
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int dst_rank) {
        return platform::dynload::ncclSend(
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
      },
      dst_rank,
      CommType::SEND,
      sync_op,
      use_calc_stream);
  return task;
}

B
Baibaifan 已提交
895
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
896
    std::vector<phi::DenseTensor>& tensors, int src_rank) {
B
Baibaifan 已提交
897 898
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

899 900
  auto task = PointToPoint(
      tensors,
901 902 903
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
904 905
          int src_rank) {
        return platform::dynload::ncclRecv(
906 907 908 909 910 911
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
912
      },
913 914
      src_rank,
      CommType::RECV);
915 916 917
  return task;
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
    std::vector<phi::DenseTensor>& tensors,
    int src_rank,
    bool sync_op,
    bool use_calc_stream) {
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  auto task = PointToPoint(
      tensors,
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int src_rank) {
        return platform::dynload::ncclRecv(
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
      },
      src_rank,
      CommType::RECV,
      sync_op,
      use_calc_stream);
  return task;
}

946
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send_Partial(
947
    phi::DenseTensor& tensors, int dst_rank, int64_t offset, int64_t length) {
948 949 950 951 952
  // CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

953 954
  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};
955

956 957
  auto task = PointToPoint(
      shared_tensors,
958 959 960
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
961 962
          int dst_rank) {
        return platform::dynload::ncclSend(
963 964 965 966 967 968
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
969
      },
970 971
      dst_rank,
      CommType::SEND);
972 973 974
  return task;
}

975 976 977
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send_Partial(
    phi::DenseTensor& tensors,
    int dst_rank,
978 979
    int64_t offset,
    int64_t length,
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    bool sync_op,
    bool use_calc_stream) {
  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};

  auto task = PointToPoint(
      shared_tensors,
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int dst_rank) {
        return platform::dynload::ncclSend(
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
      },
      dst_rank,
      CommType::SEND,
      sync_op,
      use_calc_stream);
  return task;
}

1009
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv_Partial(
1010
    phi::DenseTensor& tensors, int src_rank, int64_t offset, int64_t length) {
1011 1012 1013 1014 1015
  // phi::DenseTensor shared_input = tensors.Slice(offset, offset+length);

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

1016 1017
  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};
1018

1019 1020
  auto task = PointToPoint(
      shared_tensors,
1021 1022 1023
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
1024 1025
          int src_rank) {
        return platform::dynload::ncclRecv(
1026 1027 1028 1029 1030 1031
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
1032
      },
1033 1034
      src_rank,
      CommType::RECV);
B
Baibaifan 已提交
1035 1036 1037
  return task;
}

1038 1039 1040
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv_Partial(
    phi::DenseTensor& tensors,
    int src_rank,
1041 1042
    int64_t offset,
    int64_t length,
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    bool sync_op,
    bool use_calc_stream) {
  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};

  auto task = PointToPoint(
      shared_tensors,
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int src_rank) {
        return platform::dynload::ncclRecv(
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
      },
      src_rank,
      CommType::RECV,
      sync_op,
      use_calc_stream);
  return task;
}

1072
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
1073 1074
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
1075
  PADDLE_ENFORCE_EQ(
1076 1077
      CheckTensorsInCudaPlace(in_tensors),
      true,
1078 1079
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1080 1081
      CheckTensorsInCudaPlace(out_tensors),
      true,
1082
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
1083
  return Collective(
1084 1085 1086 1087 1088 1089
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
1090
        return platform::dynload::ncclAllGather(
1091 1092 1093 1094 1095 1096
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
1097 1098
      },
      CommType::ALLGATHER);
1099 1100
}

1101 1102
void* GetPointerByOffset(void* raw_pointer,
                         size_t offset,
1103 1104 1105 1106 1107 1108 1109
                         experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
1110 1111 1112
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
1113 1114 1115 1116 1117 1118
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
1119 1120 1121 1122 1123 1124 1125 1126
  } else if (type == experimental::DataType::INT8) {
    return reinterpret_cast<void*>(reinterpret_cast<int8_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::UINT8) {
    return reinterpret_cast<void*>(reinterpret_cast<uint8_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::BOOL) {
    return reinterpret_cast<void*>(reinterpret_cast<bool*>(raw_pointer) +
1127
                                   offset);
1128 1129 1130
  } else if (type == experimental::DataType::BFLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<uint16_t*>(raw_pointer) +
                                   offset);
1131 1132 1133 1134
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This datatype in nccl is not supported."));
  }
1135
  return nullptr;
1136 1137
}

1138 1139 1140
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather_Partial(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
1141 1142
    int64_t offset,
    int64_t length) {
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllGather(
            GetPointerByOffset(input.data(), offset, input.dtype()),
            output.data(),
            length,
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER);
}

1169 1170 1171
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather_Partial(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
1172 1173
    int64_t offset,
    int64_t length,
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllGather(
            GetPointerByOffset(input.data(), offset, input.dtype()),
            output.data(),
            length,
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER,
      sync_op,
      use_calc_stream);
}

1204
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
1205 1206
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
1207
  PADDLE_ENFORCE_EQ(
1208 1209
      CheckTensorsInCudaPlace(in_tensors),
      true,
1210 1211
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1212 1213
      CheckTensorsInCudaPlace(out_tensors),
      true,
1214 1215
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1216 1217 1218 1219 1220
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
1221 1222 1223 1224 1225
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
1226
              GetPointerByOffset(input.data(), offset, input.dtype()),
1227 1228 1229 1230 1231
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
1232
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1233
              GetPointerByOffset(output.data(), offset, input.dtype()),
1234 1235 1236 1237 1238
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
1239
          offset += input.numel() / size_;
1240 1241 1242
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
1243 1244 1245
      CommType::ALLTOALL);
}

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), offset, input.dtype()),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), offset, input.dtype()),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          offset += input.numel() / size_;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL,
      sync_op,
      use_calc_stream);
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll_Single(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    std::vector<int64_t>& in_sizes,
    std::vector<int64_t>& out_sizes) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(),
                          true,
                          platform::errors::InvalidArgument(
                              "The dtypes of input and output must be equal."));

        std::vector<int64_t> in_dims = phi::vectorize(input.dims());
        std::vector<int64_t> out_dims = phi::vectorize(output.dims());
1319 1320
        CheckSplitSizes(&in_sizes, in_dims);
        CheckSplitSizes(&out_sizes, out_dims);
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

        size_t in_offset = 0, out_offset = 0;
        size_t in_length = 0, out_length = 0;
        size_t in_row_size = input.numel() / in_dims[0];
        size_t out_row_size = output.numel() / out_dims[0];

        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          in_length = in_sizes[i] * in_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), in_offset, input.dtype()),
              in_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          in_offset += in_length;

          out_length = out_sizes[i] * out_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), out_offset, input.dtype()),
              out_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          out_offset += out_length;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL_SINGLE);
1352 1353
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAllSingle(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    std::vector<int64_t>& in_sizes,
    std::vector<int64_t>& out_sizes,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(),
                          true,
                          platform::errors::InvalidArgument(
                              "The dtypes of input and output must be equal."));

        std::vector<int64_t> in_dims = phi::vectorize(input.dims());
        std::vector<int64_t> out_dims = phi::vectorize(output.dims());
        CheckSplitSizes(&in_sizes, in_dims);
        CheckSplitSizes(&out_sizes, out_dims);

        size_t in_offset = 0, out_offset = 0;
        size_t in_length = 0, out_length = 0;
        size_t in_row_size = input.numel() / in_dims[0];
        size_t out_row_size = output.numel() / out_dims[0];

        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          in_length = in_sizes[i] * in_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), in_offset, input.dtype()),
              in_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          in_offset += in_length;

          out_length = out_sizes[i] * out_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), out_offset, input.dtype()),
              out_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          out_offset += out_length;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL_SINGLE,
      sync_op,
      use_calc_stream);
}

1420
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
1421
    std::vector<phi::DenseTensor>& in_tensors,
1422 1423
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceOptions& opts) {
1424
  PADDLE_ENFORCE_EQ(
1425 1426
      CheckTensorsInCudaPlace(in_tensors),
      true,
1427 1428
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1429 1430 1431 1432 1433 1434
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
1435
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
1436 1437 1438
            input.data(),
            output.data(),
            input.numel(),
1439
            platform::ToNCCLDataType(input.dtype()),
1440 1441 1442 1443
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
1444 1445 1446 1447
      },
      CommType::REDUCE);
}

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
      },
      CommType::REDUCE,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::ReduceScatter(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceScatterOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        if (FLAGS_use_stream_safe_cuda_allocator) {
          platform::CUDADeviceGuard cuda_guard;
          cuda_guard.SetDevice(output.place());
          memory::RecordStream(output.Holder(), stream);
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
            input.data(),
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream));
      },
      CommType::REDUCE_SCATTER,
      sync_op,
      use_calc_stream);
}

1512
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
1513
    std::vector<phi::DenseTensor>& in_tensors,
1514 1515
    std::vector<phi::DenseTensor>& out_tensors,
    const ScatterOptions& opts) {
1516
  PADDLE_ENFORCE_EQ(
1517 1518
      CheckTensorsInCudaPlace(in_tensors),
      true,
1519 1520
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1521 1522
      CheckTensorsInCudaPlace(out_tensors),
      true,
1523 1524
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1525 1526 1527 1528 1529
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
1530 1531 1532 1533 1534 1535
          const gpuStream_t& stream) {
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
1536
                GetPointerByOffset(input.data(), offset, input.dtype()),
1537 1538 1539 1540 1541
                input.numel() / size_,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
1542
            offset += input.numel() / size_;
1543 1544
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1545 1546 1547 1548 1549
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
1550 1551 1552 1553
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1554 1555 1556 1557 1558
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
1559 1560 1561 1562 1563 1564
              stream));
        }
      },
      CommType::SCATTER);
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const ScatterOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(
            output.numel(),
            input.numel() / size_,
            platform::errors::InvalidArgument(
                "Input and output tensors should have the same shape."));
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
                GetPointerByOffset(input.data(), offset, input.dtype()),
                input.numel() / size_,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
            offset += input.numel() / size_;
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
              stream));
        }
      },
      CommType::SCATTER,
      sync_op,
      use_calc_stream);
}

1627 1628
}  //  namespace distributed
}  //  namespace paddle