detection.py 12.6 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

from ..layer_helper import LayerHelper
from ..framework import Variable
from tensor import concat
C
chengduoZH 已提交
21
from ops import reshape
C
chengduoZH 已提交
22
from operator import mul
C
chengduoZH 已提交
23 24
import math

C
chengduoZH 已提交
25 26 27 28
__all__ = [
    'detection_output',
    'prior_box',
]
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124


def detection_output(scores,
                     loc,
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
    **Detection Output Layer**

    This layer applies the NMS to the output of network and computes the 
    predict bounding box location. The output's shape of this layer could
    be zero if there is no valid bounding box.

    Args:
        scores(Variable): A 3-D Tensor with shape [N, C, M] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
        The detected bounding boxes which are a Tensor.

    Examples:
        .. code-block:: python

        pb = layers.data(name='prior_box', shape=[10, 4],
                         append_batch_size=False, dtype='float32')
        pbv = layers.data(name='prior_box_var', shape=[10, 4],
                          append_batch_size=False, dtype='float32')
        loc = layers.data(name='target_box', shape=[21, 4],
                          append_batch_size=False, dtype='float32')
        scores = layers.data(name='scores', shape=[2, 21, 10],
                          append_batch_size=False, dtype='float32')
        nmsed_outs = fluid.layers.detection_output(scores=scores,
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """

    helper = LayerHelper("detection_output", **locals())
    decoded_box = helper.create_tmp_variable(dtype=loc.dtype)
    helper.append_op(
        type="box_coder",
        inputs={
            'PriorBox': prior_box,
            'PriorBoxVar': prior_box_var,
            'TargetBox': loc
        },
        outputs={'OutputBox': decoded_box},
        attrs={'code_type': 'decode_center_size'})
    nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype)

    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
    return nmsed_outs
C
chengduoZH 已提交
125 126


C
chengduoZH 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
def prior_box(inputs,
              image,
              min_ratio,
              max_ratio,
              aspect_ratios,
              base_size,
              steps=None,
              step_w=None,
              step_h=None,
              offset=0.5,
              variance=[0.1, 0.1, 0.1, 0.1],
              flip=False,
              clip=False,
              min_sizes=None,
              max_sizes=None,
              name=None):
C
chengduoZH 已提交
143 144 145 146
    """
    **Prior_boxes**

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
C
chengduoZH 已提交
147 148
    The details of this algorithm, please refer the section 2.2 of SSD paper
    (SSD: Single Shot MultiBox Detector)<https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
149
    
C
chengduoZH 已提交
150
    Args:
C
chengduoZH 已提交
151 152
       inputs(list): The list of input Variables, the format of all Variables is NCHW.
       image(Variable): The input image data of PriorBoxOp, the layout is NCHW.
C
chengduoZH 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       aspect_ratios(list): the aspect ratios of generated prior boxes.
            The length of input and aspect_ratios must be equal.
       base_size(int): the base_size is used to get min_size and max_size
            according to min_ratio and max_ratio.
       step_w(list, optional, default=None): Prior boxes step across width.
            If step_w[i] == 0.0, the prior boxes step across width of the inputs[i]
            will be automatically calculated.
       step_h(list, optional, default=None): Prior boxes step across height,
            If step_h[i] == 0.0, the prior boxes step across height of the inputs[i]
            will be automatically calculated.
       offset(float, optional, default=0.5): Prior boxes center offset.
       variance(list, optional, default=[0.1, 0.1, 0.1, 0.1]): the variances
            to be encoded in prior boxes.
       flip(bool, optional, default=False): Whether to flip aspect ratios.
       clip(bool, optional, default=False): Whether to clip out-of-boundary boxes.
C
chengduoZH 已提交
170 171 172 173
       min_sizes(list, optional, default=None): If `len(inputs) <=2`, min_sizes must
            be set up, and the length of min_sizes should equal to the length of inputs.
       max_sizes(list, optional, default=None): If `len(inputs) <=2`, max_sizes must
            be set up, and the length of min_sizes should equal to the length of inputs.
C
chengduoZH 已提交
174
       name(str, optional, None): Name of the prior box layer.
C
chengduoZH 已提交
175
    
C
chengduoZH 已提交
176
    Returns:
C
chengduoZH 已提交
177
        boxes(Variable): the output prior boxes of PriorBoxOp. The layout is
C
chengduoZH 已提交
178 179
             [num_priors, 4]. num_priors is the total box count of each
              position of inputs.
C
chengduoZH 已提交
180
        Variances(Variable): the expanded variances of PriorBoxOp. The layout
C
chengduoZH 已提交
181 182
             is [num_priors, 4]. num_priors is the total box count of each
             position of inputs
C
chengduoZH 已提交
183
    
C
chengduoZH 已提交
184 185
    Examples:
        .. code-block:: python
C
chengduoZH 已提交
186 187
    
          prior_box(
C
chengduoZH 已提交
188 189 190 191 192
             inputs = [conv1, conv2, conv3, conv4, conv5, conv6],
             image = data,
             min_ratio = 20, # 0.20
             max_ratio = 90, # 0.90
             offset = 0.5,
C
chengduoZH 已提交
193
             base_size = 300,
C
chengduoZH 已提交
194
             variance = [0.1,0.1,0.1,0.1],
C
chengduoZH 已提交
195
             aspect_ratios = [[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
C
chengduoZH 已提交
196 197 198
             flip=True,
             clip=True)
    """
C
chengduoZH 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

    def _prior_box_(input,
                    image,
                    min_sizes,
                    max_sizes,
                    aspect_ratios,
                    variance,
                    flip=False,
                    clip=False,
                    step_w=0.0,
                    step_h=0.0,
                    offset=0.5,
                    name=None):
        helper = LayerHelper("prior_box", **locals())
        dtype = helper.input_dtype()

        box = helper.create_tmp_variable(dtype)
        var = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="prior_box",
            inputs={"Input": input,
                    "Image": image},
            outputs={"Boxes": box,
                     "Variances": var},
            attrs={
                'min_sizes': min_sizes,
                'max_sizes': max_sizes,
                'aspect_ratios': aspect_ratios,
                'variances': variance,
                'flip': flip,
                'clip': clip,
                'step_w': step_w,
                'step_h': step_h,
                'offset': offset
            })
        return box, var

    def _reshape_with_axis_(input, axis=1):
        if not (axis > 0 and axis < len(input.shape)):
            raise ValueError(
C
chengduoZH 已提交
239 240
                "The axis should be smaller than the arity of input and bigger than 0."
            )
C
chengduoZH 已提交
241
        new_shape = [-1, reduce(mul, input.shape[axis:len(input.shape)], 1)]
C
chengduoZH 已提交
242
        out = reshape(x=input, shape=new_shape)
C
chengduoZH 已提交
243 244
        return out

C
chengduoZH 已提交
245 246 247
    assert isinstance(inputs, list), 'inputs should be a list.'
    num_layer = len(inputs)

C
chengduoZH 已提交
248 249 250 251 252 253
    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
    else:
        min_sizes = []
        max_sizes = []
C
chengduoZH 已提交
254 255 256 257 258 259 260
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
        for ratio in xrange(min_ratio, max_ratio + 1, step):
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
261 262 263 264 265 266
    if aspect_ratios:
        if not (isinstance(aspect_ratios, list) and
                len(aspect_ratios) == num_layer):
            raise ValueError(
                'aspect_ratios should be list and the length of inputs '
                'and aspect_ratios should be the same.')
C
chengduoZH 已提交
267
    if step_h:
C
chengduoZH 已提交
268 269 270 271
        if not (isinstance(step_h, list) and len(step_h) == num_layer):
            raise ValueError(
                'step_h should be list and the length of inputs and '
                'step_h should be the same.')
C
chengduoZH 已提交
272
    if step_w:
C
chengduoZH 已提交
273 274 275 276
        if not (isinstance(step_w, list) and len(step_w) == num_layer):
            raise ValueError(
                'step_w should be list and the length of inputs and '
                'step_w should be the same.')
C
chengduoZH 已提交
277
    if steps:
C
chengduoZH 已提交
278 279 280 281
        if not (isinstance(steps, list) and len(steps) == num_layer):
            raise ValueError(
                'steps should be list and the length of inputs and '
                'step_w should be the same.')
C
chengduoZH 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        step_w = steps
        step_h = steps

    box_results = []
    var_results = []
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
        max_size = max_sizes[i]
        aspect_ratio = []
        if not isinstance(min_size, list):
            min_size = [min_size]
        if not isinstance(max_size, list):
            max_size = [max_size]
        if aspect_ratios:
            aspect_ratio = aspect_ratios[i]
            if not isinstance(aspect_ratio, list):
                aspect_ratio = [aspect_ratio]

C
chengduoZH 已提交
300 301 302 303
        box, var = _prior_box_(input, image, min_size, max_size, aspect_ratio,
                               variance, flip, clip, step_w[i]
                               if step_w else 0.0, step_h[i]
                               if step_w else 0.0, offset)
C
chengduoZH 已提交
304 305 306 307 308 309 310 311 312 313 314

        box_results.append(box)
        var_results.append(var)

    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
C
chengduoZH 已提交
315 316
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))
C
chengduoZH 已提交
317 318 319 320 321

        box = concat(reshaped_boxes)
        var = concat(reshaped_vars)

    return box, var