detection.py 8.5 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

from ..layer_helper import LayerHelper
from ..framework import Variable
from tensor import concat
C
chengduoZH 已提交
21
from ops import reshape
C
chengduoZH 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
import math

__all__ = [
    'prior_box',
    'prior_boxes',
]


def prior_boxes(inputs,
                image,
                min_ratio,
                max_ratio,
                aspect_ratios,
                base_size,
                steps=None,
                step_w=None,
                step_h=None,
                offset=0.5,
                variance=[0.1, 0.1, 0.1, 0.1],
                flip=False,
                clip=False,
C
chengduoZH 已提交
43 44
                min_sizes=None,
                max_sizes=None,
C
chengduoZH 已提交
45 46 47 48 49
                name=None):
    """
    **Prior_boxes**

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
C
chengduoZH 已提交
50 51
    The details of this algorithm, please refer the section 2.2 of SSD paper
    (SSD: Single Shot MultiBox Detector)<https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
52 53

    Args:
C
chengduoZH 已提交
54 55
       inputs(list): The list of input Variables, the format of all Variables is NCHW.
       image(Variable): The input image data of PriorBoxOp, the layout is NCHW.
C
chengduoZH 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       aspect_ratios(list): the aspect ratios of generated prior boxes.
            The length of input and aspect_ratios must be equal.
       base_size(int): the base_size is used to get min_size and max_size
            according to min_ratio and max_ratio.
       step_w(list, optional, default=None): Prior boxes step across width.
            If step_w[i] == 0.0, the prior boxes step across width of the inputs[i]
            will be automatically calculated.
       step_h(list, optional, default=None): Prior boxes step across height,
            If step_h[i] == 0.0, the prior boxes step across height of the inputs[i]
            will be automatically calculated.
       offset(float, optional, default=0.5): Prior boxes center offset.
       variance(list, optional, default=[0.1, 0.1, 0.1, 0.1]): the variances
            to be encoded in prior boxes.
       flip(bool, optional, default=False): Whether to flip aspect ratios.
       clip(bool, optional, default=False): Whether to clip out-of-boundary boxes.
C
chengduoZH 已提交
73 74 75 76
       min_sizes(list, optional, default=None): If `len(inputs) <=2`, min_sizes must
            be set up, and the length of min_sizes should equal to the length of inputs.
       max_sizes(list, optional, default=None): If `len(inputs) <=2`, max_sizes must
            be set up, and the length of min_sizes should equal to the length of inputs.
C
chengduoZH 已提交
77 78 79
       name(str, optional, None): Name of the prior box layer.

    Returns:
C
chengduoZH 已提交
80
        boxes(Variable): the output prior boxes of PriorBoxOp. The layout is
C
chengduoZH 已提交
81 82
             [num_priors, 4]. num_priors is the total box count of each
              position of inputs.
C
chengduoZH 已提交
83
        Variances(Variable): the expanded variances of PriorBoxOp. The layout
C
chengduoZH 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
             is [num_priors, 4]. num_priors is the total box count of each
             position of inputs

    Examples:
        .. code-block:: python

          prior_boxes(
             inputs = [conv1, conv2, conv3, conv4, conv5, conv6],
             image = data,
             min_ratio = 20, # 0.20
             max_ratio = 90, # 0.90
             steps = [8., 16., 32., 64., 100., 300.],
             aspect_ratios = [[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
             base_size = 300,
             offset = 0.5,
             variance = [0.1,0.1,0.1,0.1],
             flip=True,
             clip=True)
    """
C
chengduoZH 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    def _prior_box_(input,
                    image,
                    min_sizes,
                    max_sizes,
                    aspect_ratios,
                    variance,
                    flip=False,
                    clip=False,
                    step_w=0.0,
                    step_h=0.0,
                    offset=0.5,
                    name=None):
        helper = LayerHelper("prior_box", **locals())
        dtype = helper.input_dtype()

        box = helper.create_tmp_variable(dtype)
        var = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="prior_box",
            inputs={"Input": input,
                    "Image": image},
            outputs={"Boxes": box,
                     "Variances": var},
            attrs={
                'min_sizes': min_sizes,
                'max_sizes': max_sizes,
                'aspect_ratios': aspect_ratios,
                'variances': variance,
                'flip': flip,
                'clip': clip,
                'step_w': step_w,
                'step_h': step_h,
                'offset': offset
            })
        return box, var

    def _reshape_with_axis_(input, axis=1):
        if not (axis > 0 and axis < len(input.shape)):
            raise ValueError(
                "The axis should be smaller than the arity of input's shape.")
        new_shape = [-1, reduce(mul, input.shape[axis:len(input.shape)], 1)]
        out = reshape([input], shape=new_shape)
        return out

C
chengduoZH 已提交
148 149 150
    assert isinstance(inputs, list), 'inputs should be a list.'
    num_layer = len(inputs)

C
chengduoZH 已提交
151 152 153 154 155 156
    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
    else:
        min_sizes = []
        max_sizes = []
C
chengduoZH 已提交
157 158 159 160 161 162 163
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
        for ratio in xrange(min_ratio, max_ratio + 1, step):
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
164 165 166 167 168 169
    if aspect_ratios:
        if not (isinstance(aspect_ratios, list) and
                len(aspect_ratios) == num_layer):
            raise ValueError(
                'aspect_ratios should be list and the length of inputs '
                'and aspect_ratios should be the same.')
C
chengduoZH 已提交
170
    if step_h:
C
chengduoZH 已提交
171 172 173 174
        if not (isinstance(step_h, list) and len(step_h) == num_layer):
            raise ValueError(
                'step_h should be list and the length of inputs and '
                'step_h should be the same.')
C
chengduoZH 已提交
175
    if step_w:
C
chengduoZH 已提交
176 177 178 179
        if not (isinstance(step_w, list) and len(step_w) == num_layer):
            raise ValueError(
                'step_w should be list and the length of inputs and '
                'step_w should be the same.')
C
chengduoZH 已提交
180
    if steps:
C
chengduoZH 已提交
181 182 183 184
        if not (isinstance(steps, list) and len(steps) == num_layer):
            raise ValueError(
                'steps should be list and the length of inputs and '
                'step_w should be the same.')
C
chengduoZH 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        step_w = steps
        step_h = steps

    box_results = []
    var_results = []
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
        max_size = max_sizes[i]
        aspect_ratio = []
        if not isinstance(min_size, list):
            min_size = [min_size]
        if not isinstance(max_size, list):
            max_size = [max_size]
        if aspect_ratios:
            aspect_ratio = aspect_ratios[i]
            if not isinstance(aspect_ratio, list):
                aspect_ratio = [aspect_ratio]

C
chengduoZH 已提交
203 204 205 206
        box, var = _prior_box_(input, image, min_size, max_size, aspect_ratio,
                               variance, flip, clip, step_w[i]
                               if step_w else 0.0, step_h[i]
                               if step_w else 0.0, offset)
C
chengduoZH 已提交
207 208 209 210 211 212 213 214 215 216 217

        box_results.append(box)
        var_results.append(var)

    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
C
chengduoZH 已提交
218 219
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))
C
chengduoZH 已提交
220 221 222 223 224

        box = concat(reshaped_boxes)
        var = concat(reshaped_vars)

    return box, var