test_concat_op.py 20.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
20
import paddle.fluid as fluid
21
from paddle.fluid import compiler, Program, program_guard, core
22
from paddle.fluid.framework import _test_eager_guard
23
import paddle
24 25 26
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
27 28


29
class TestConcatOp(OpTest):
30

31
    def setUp(self):
32
        self.op_type = "concat"
33
        self.python_api = paddle.concat
34
        self.dtype = self.get_dtype()
C
chengduoZH 已提交
35 36 37
        self.init_test_data()
        self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
        self.attrs = {'axis': self.axis}
38 39 40 41 42 43
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis

C
chengduoZH 已提交
44
        self.outputs = {
45 46
            'Out':
            np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis)
C
chengduoZH 已提交
47
        }
48

49
    def get_dtype(self):
50
        return "float64"
51

52
    def test_check_output(self):
53 54 55 56
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place)
        else:
57
            self.check_output(check_eager=True)
58

59
    def test_check_grad(self):
60 61 62 63 64 65
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(place, ['x0'], 'Out')
            self.check_grad_with_place(place, ['x1'], 'Out')
            self.check_grad_with_place(place, ['x2'], 'Out')
        else:
66 67 68
            self.check_grad(['x0'], 'Out', check_eager=True)
            self.check_grad(['x1'], 'Out', check_eager=True)
            self.check_grad(['x2'], 'Out', check_eager=True)
C
chengduoZH 已提交
69 70

    def init_test_data(self):
71 72 73 74 75 76 77 78 79 80 81
        if self.dtype == np.uint16:
            x0 = np.random.random((5, 1, 4, 5)).astype(np.float32)
            self.x0 = convert_float_to_uint16(x0)
            x1 = np.random.random((5, 2, 4, 5)).astype(np.float32)
            self.x1 = convert_float_to_uint16(x1)
            x2 = np.random.random((5, 3, 4, 5)).astype(np.float32)
            self.x2 = convert_float_to_uint16(x2)
        else:
            self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
            self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
            self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
82 83 84
        self.axis = 1


85
class TestConcatOp2(TestConcatOp):
86

C
chengduoZH 已提交
87
    def init_test_data(self):
88 89 90
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
91
        self.axis = 1
92

93

94 95
@skip_check_grad_ci(
    reason="The function 'check_grad' for large inputs is too slow.")
96
class TestConcatOp3(TestConcatOp):
97

98
    def init_test_data(self):
99 100 101
        self.x0 = np.random.random((1, 256, 170, 256)).astype(self.dtype)
        self.x1 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
        self.x2 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
102 103 104 105 106 107
        self.axis = 1

    def test_check_grad(self):
        pass


108
@skip_check_grad_ci(
109 110
    reason=
    "This test will meet fetch error when there is a null grad. The detailed information is in PR#17015."
111
)
112
class TestConcatOp4(TestConcatOp):
113

114
    def init_test_data(self):
115 116 117
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((0, 3, 4, 5)).astype(self.dtype)
118 119 120 121 122 123
        self.axis = 0

    def test_check_grad(self):
        pass


124
class TestConcatOp5(TestConcatOp):
125

126
    def init_test_data(self):
Z
zhupengyang 已提交
127 128 129
        self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
130 131 132
        self.axis = -3


133
class TestConcatOp6(TestConcatOp):
134

135 136 137
    def setUp(self):
        self.op_type = "concat"
        self.dtype = self.get_dtype()
138
        self.python_api = paddle.concat
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        self.init_test_data()
        self.lod = [[20, 80]]
        self.out_lod = [[20, 80, 20, 80, 20, 80]]
        self.inputs = {
            'X': [('x0', (self.x0, self.lod)), ('x1', (self.x1, self.lod)),
                  ('x2', (self.x2, self.lod))]
        }
        self.attrs = {'axis': self.axis}
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis
        out = np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis)
        self.outputs = {'Out': (out, self.out_lod)}

    def test_check_output(self):
156
        self.check_output(check_eager=True)
157 158

    def test_check_grad(self):
159 160 161
        self.check_grad(['x0'], 'Out', check_eager=True)
        self.check_grad(['x1'], 'Out', check_eager=True)
        self.check_grad(['x2'], 'Out', check_eager=True)
162 163 164 165 166 167 168 169

    def init_test_data(self):
        self.x0 = np.random.random([100]).astype(self.dtype)
        self.x1 = np.random.random([100]).astype(self.dtype)
        self.x2 = np.random.random([100]).astype(self.dtype)
        self.axis = 0


170
def create_test_AxisTensor(parent):
171

172
    class TestConcatAxisTensor(parent):
173

174 175
        def setUp(self):
            self.op_type = "concat"
176
            self.python_api = paddle.concat
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
            self.dtype = self.get_dtype()
            self.init_test_data()

            self.inputs = {
                'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)],
                'AxisTensor': np.array([self.axis]).astype("int32")
            }
            self.attrs = {}

            if self.axis < 0:
                self.actual_axis = self.axis + len(self.x0.shape)
                self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
            else:
                self.actual_axis = self.axis

            self.outputs = {
193 194 195
                'Out':
                np.concatenate((self.x0, self.x1, self.x2),
                               axis=self.actual_axis)
196 197 198 199 200 201 202 203 204 205 206 207
            }

    cls_name = "{0}_{1}".format(parent.__name__, "AxisTensor")
    TestConcatAxisTensor.__name__ = cls_name
    globals()[cls_name] = TestConcatAxisTensor


create_test_AxisTensor(TestConcatOp)
create_test_AxisTensor(TestConcatOp2)
create_test_AxisTensor(TestConcatOp3)
create_test_AxisTensor(TestConcatOp4)
create_test_AxisTensor(TestConcatOp5)
208
create_test_AxisTensor(TestConcatOp6)
209

210 211 212 213
#----------------Concat Fp16----------------


def create_test_fp16(parent):
214

215
    class TestConcatFp16(parent):
216

217 218 219 220 221 222 223 224 225 226 227 228 229
        def get_dtype(self):
            return np.float16

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestConcatFp16.__name__ = cls_name
    globals()[cls_name] = TestConcatFp16


create_test_fp16(TestConcatOp)
create_test_fp16(TestConcatOp2)
create_test_fp16(TestConcatOp3)
create_test_fp16(TestConcatOp4)
create_test_fp16(TestConcatOp5)
230
create_test_fp16(TestConcatOp6)
231

232

233 234
#----------------Concat Bf16----------------
def create_test_bf16(parent):
235

236 237 238
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestConcatBf16(parent):
239

240 241 242 243 244 245 246 247 248 249 250
        def get_dtype(self):
            return np.uint16

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestConcatBf16.__name__ = cls_name
    globals()[cls_name] = TestConcatBf16


create_test_bf16(TestConcatOp)


251
class TestConcatOpError(unittest.TestCase):
252

253 254
    def test_errors(self):
        with program_guard(Program(), Program()):
255 256 257 258
            # The input type of concat_op should be list.
            x1 = fluid.layers.data(shape=[4], dtype='int32', name='x1')
            fluid.layers.concat(x1)
            # The item in input must be Variable.
259 260 261 262
            x2 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
            x3 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
263
            self.assertRaises(TypeError, fluid.layers.concat, [x2])
264
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
265 266 267 268 269
            x4 = fluid.layers.data(shape=[4], dtype='uint8', name='x4')
            x5 = fluid.layers.data(shape=[4], dtype='uint8', name='x5')
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
270
            x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')
271
            fluid.layers.concat([x6, x7])
272

273 274 275 276 277 278
            # The type of axis in concat_op should be int or Variable.
            def test_axis_type():
                fluid.layers.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

279 280 281 282 283
            def test_input_same_dtype():
                fluid.layers.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

284

285
class TestConcatAPI(unittest.TestCase):
286

287
    def test_fluid_api(self):
288
        paddle.enable_static()
289 290 291 292 293 294 295
        x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1')
        fluid.layers.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
296 297
        positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
298
        out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1)
299 300
        out_2 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int32)
        out_3 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int64)
301 302

        exe = fluid.Executor(place=fluid.CPUPlace())
303 304 305 306 307 308 309
        [res_1, res_2, res_3] = exe.run(fluid.default_main_program(),
                                        feed={
                                            "x_1": input_2,
                                            "x_2": input_2,
                                            "x_3": input_3
                                        },
                                        fetch_list=[out_1, out_2, out_3])
310 311
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
312
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
313

314
    def test_api(self):
315
        paddle.enable_static()
316 317 318
        x_1 = paddle.fluid.data(shape=[None, 1, 4, 5],
                                dtype='int32',
                                name='x_1')
319 320 321 322 323 324
        paddle.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
325 326 327
        positive_1_int32 = paddle.fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = paddle.fluid.layers.fill_constant([1], "int64", 1)
        negative_int64 = paddle.fluid.layers.fill_constant([1], "int64", -3)
328 329 330 331 332
        out_1 = paddle.concat(x=[x_2, x_3], axis=1)
        out_2 = paddle.concat(x=[x_2, x_3], axis=positive_1_int32)
        out_3 = paddle.concat(x=[x_2, x_3], axis=positive_1_int64)
        out_4 = paddle.concat(x=[x_2, x_3], axis=negative_int64)

333
        exe = paddle.static.Executor(place=paddle.CPUPlace())
334 335 336 337 338 339 340 341
        [res_1, res_2, res_3,
         res_4] = exe.run(paddle.static.default_main_program(),
                          feed={
                              "x_1": input_2,
                              "x_2": input_2,
                              "x_3": input_3
                          },
                          fetch_list=[out_1, out_2, out_3, out_4])
342 343 344 345 346 347 348 349 350
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_4, np.concatenate((input_2, input_3), axis=1))

    def test_imperative(self):
        in1 = np.array([[1, 2, 3], [4, 5, 6]])
        in2 = np.array([[11, 12, 13], [14, 15, 16]])
        in3 = np.array([[21, 22], [23, 24]])
351
        paddle.disable_static()
Z
Zhou Wei 已提交
352 353 354
        x1 = paddle.to_tensor(in1)
        x2 = paddle.to_tensor(in2)
        x3 = paddle.to_tensor(in3)
355 356 357 358 359
        out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
        out2 = paddle.concat(x=[x1, x2], axis=0)
        np_out1 = np.concatenate([in1, in2, in3], axis=-1)
        np_out2 = np.concatenate([in1, in2], axis=0)
        paddle.enable_static()
360 361 362
        self.assertEqual((out1.numpy() == np_out1).all(), True)
        self.assertEqual((out2.numpy() == np_out2).all(), True)

363 364 365 366 367 368
    def test_eager(self):
        with _test_eager_guard():
            self.test_api()
            self.test_fluid_api()
            self.test_imperative()

369 370 371
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The item in input must be Variable.
372 373 374 375
            x2 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
            x3 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
376 377
            self.assertRaises(TypeError, paddle.concat, [x2])
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
378 379
            x4 = paddle.fluid.data(shape=[4], dtype='uint8', name='x4')
            x5 = paddle.fluid.data(shape=[4], dtype='uint8', name='x5')
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])

            # The type of axis in concat_op should be int or Variable.
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
            x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')

            def test_axis_type():
                paddle.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

            def test_input_same_dtype():
                paddle.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

397

398 399 400 401 402 403 404
class TestConcatAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test concat api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
405
        self.python = paddle.concat
406 407 408 409 410 411
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
        self.place = fluid.CUDAPlace(0) \
            if fluid.is_compiled_with_cuda() else fluid.CPUPlace()

412 413 414 415 416 417 418
    def set_program(self, use_fluid_api):
        paddle.enable_static()
        if use_fluid_api:
            self.program = fluid.Program()
            with fluid.program_guard(self.program):
                input = fluid.layers.assign(self.x)
                tensor_array = fluid.layers.create_array(dtype='float32')
419 420 421
                zero = fluid.layers.fill_constant(shape=[1],
                                                  value=0,
                                                  dtype="int64")
422 423 424 425 426 427 428 429 430 431 432 433 434

                for i in range(self.iter_num):
                    fluid.layers.array_write(input, zero + i, tensor_array)

                self.out_var = fluid.layers.concat(tensor_array, axis=self.axis)
        else:
            self.program = paddle.static.Program()
            with paddle.static.program_guard(self.program):
                input = paddle.assign(self.x)
                tensor_array = fluid.layers.create_array(
                    dtype='float32'
                )  # Api create_array is not supported in paddle 2.0 yet.
                zero = paddle.zeros(shape=[1], dtype="int64")
435

436 437 438 439 440 441 442 443
                for i in range(self.iter_num):
                    # Api array_write is not supported in paddle 2.0 yet.
                    fluid.layers.array_write(input, zero + i, tensor_array)

                self.out_var = paddle.concat(tensor_array, axis=self.axis)

    def test_fluid_api(self):
        self._run_static_mode(use_fluid_api=True)
444

445 446
    def test_paddle_api(self):
        self._run_static_mode(use_fluid_api=False)
447

448 449
    def _run_static_mode(self, use_fluid_api):
        self.set_program(use_fluid_api)
450 451 452
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
453 454
        np.testing.assert_array_equal(
            res[0], np.concatenate([self.x] * self.iter_num, axis=self.axis))
455 456


457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
class TestConcatDoubleGradCheck(unittest.TestCase):

    def concat_wrapper(self, x):
        return paddle.concat(x)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data1 = layers.data('data1', [2, 3], False, dtype)
        data1.persistable = True
        data2 = layers.data('data2', [2, 3], False, dtype)
        data2.persistable = True
        out = paddle.concat([data1, data2])
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data2.shape).astype(dtype)
        gradient_checker.double_grad_check([data1, data2],
                                           out,
                                           x_init=[data1_arr, data2_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(
            self.concat_wrapper, [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConcatTripleGradCheck(unittest.TestCase):

    def concat_wrapper(self, x):
        return paddle.concat(x, 1)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data1 = layers.data('data1', [2, 3, 4], False, dtype)
        data1.persistable = True
        data2 = layers.data('data2', [2, 3, 4], False, dtype)
        data2.persistable = True
        out = paddle.concat([data1, data2], 1)
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data2.shape).astype(dtype)
        gradient_checker.double_grad_check([data1, data2],
                                           out,
                                           x_init=[data1_arr, data2_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(
            self.concat_wrapper, [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


535 536
if __name__ == '__main__':
    unittest.main()