test_concat_op.py 7.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest, skip_check_grad_ci
20
import paddle.fluid as fluid
21
from paddle.fluid import compiler, Program, program_guard, core
22 23


24
class TestConcatOp(OpTest):
25
    def setUp(self):
26
        self.op_type = "concat"
27
        self.dtype = self.get_dtype()
C
chengduoZH 已提交
28 29 30
        self.init_test_data()
        self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
        self.attrs = {'axis': self.axis}
31 32 33 34 35 36
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis

C
chengduoZH 已提交
37 38
        self.outputs = {
            'Out': np.concatenate(
39
                (self.x0, self.x1, self.x2), axis=self.actual_axis)
C
chengduoZH 已提交
40
        }
41

42
    def get_dtype(self):
43
        return "float64"
44

45 46 47
    def test_check_output(self):
        self.check_output()

48 49
    def test_check_grad(self):
        self.check_grad(['x0'], 'Out')
C
chengduoZH 已提交
50 51 52 53
        self.check_grad(['x1'], 'Out')
        self.check_grad(['x2'], 'Out')

    def init_test_data(self):
Z
zhupengyang 已提交
54 55 56
        self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
57 58 59
        self.axis = 1


60
class TestConcatOp2(TestConcatOp):
C
chengduoZH 已提交
61
    def init_test_data(self):
62 63 64
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
65
        self.axis = 1
66

67

68 69
@skip_check_grad_ci(
    reason="The function 'check_grad' for large inputs is too slow.")
70 71
class TestConcatOp3(TestConcatOp):
    def init_test_data(self):
72 73 74
        self.x0 = np.random.random((1, 256, 170, 256)).astype(self.dtype)
        self.x1 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
        self.x2 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
75 76 77 78 79 80
        self.axis = 1

    def test_check_grad(self):
        pass


81 82 83
@skip_check_grad_ci(
    reason="This test will meet fetch error when there is a null grad. The detailed information is in PR#17015."
)
84 85
class TestConcatOp4(TestConcatOp):
    def init_test_data(self):
86 87 88
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((0, 3, 4, 5)).astype(self.dtype)
89 90 91 92 93 94
        self.axis = 0

    def test_check_grad(self):
        pass


95 96
class TestConcatOp5(TestConcatOp):
    def init_test_data(self):
Z
zhupengyang 已提交
97 98 99
        self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
100 101 102
        self.axis = -3


103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
def create_test_AxisTensor(parent):
    class TestConcatAxisTensor(parent):
        def setUp(self):
            self.op_type = "concat"
            self.dtype = self.get_dtype()
            self.init_test_data()

            self.inputs = {
                'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)],
                'AxisTensor': np.array([self.axis]).astype("int32")
            }
            self.attrs = {}

            if self.axis < 0:
                self.actual_axis = self.axis + len(self.x0.shape)
                self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
            else:
                self.actual_axis = self.axis

            self.outputs = {
                'Out': np.concatenate(
                    (self.x0, self.x1, self.x2), axis=self.actual_axis)
            }

    cls_name = "{0}_{1}".format(parent.__name__, "AxisTensor")
    TestConcatAxisTensor.__name__ = cls_name
    globals()[cls_name] = TestConcatAxisTensor


create_test_AxisTensor(TestConcatOp)
create_test_AxisTensor(TestConcatOp2)
create_test_AxisTensor(TestConcatOp3)
create_test_AxisTensor(TestConcatOp4)
create_test_AxisTensor(TestConcatOp5)

138 139 140 141
#----------------Concat Fp16----------------


def create_test_fp16(parent):
142 143
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    class TestConcatFp16(parent):
        def get_dtype(self):
            return np.float16

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestConcatFp16.__name__ = cls_name
    globals()[cls_name] = TestConcatFp16


create_test_fp16(TestConcatOp)
create_test_fp16(TestConcatOp2)
create_test_fp16(TestConcatOp3)
create_test_fp16(TestConcatOp4)
create_test_fp16(TestConcatOp5)

159

160
class TestConcatOpError(unittest.TestCase):
161 162
    def test_errors(self):
        with program_guard(Program(), Program()):
163 164 165 166 167
            # The input type of concat_op should be list.
            x1 = fluid.layers.data(shape=[4], dtype='int32', name='x1')
            fluid.layers.concat(x1)
            # The item in input must be Variable.
            x2 = fluid.create_lod_tensor(
168
                np.array([[-1]]), [[1]], fluid.CPUPlace())
169 170 171
            x3 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.concat, [x2])
172
            # The input dtype of concat_op must be float16(only support on GPU), float32, float64, int32, int64.
173 174 175 176 177 178
            x4 = fluid.layers.data(shape=[4], dtype='uint8', name='x4')
            x5 = fluid.layers.data(shape=[4], dtype='uint8', name='x5')
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
            fluid.layers.concat([x6, x7])
179

180 181 182 183 184 185 186
            # The type of axis in concat_op should be int or Variable.
            def test_axis_type():
                fluid.layers.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)


187
class TestConcatAPI(unittest.TestCase):
188 189 190 191 192 193 194 195
    def test_api(self):
        x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1')
        fluid.layers.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
196 197
        positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
198
        out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1)
199 200
        out_2 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int32)
        out_3 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int64)
201 202

        exe = fluid.Executor(place=fluid.CPUPlace())
203
        [res_1, res_2, res_3] = exe.run(
204 205 206 207
            fluid.default_main_program(),
            feed={"x_1": input_2,
                  "x_2": input_2,
                  "x_3": input_3},
208
            fetch_list=[out_1, out_2, out_3])
209 210
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
211
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
212

213

214 215
if __name__ == '__main__':
    unittest.main()