io.py 60.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import pickle
import numpy as np

20
import paddle
21 22 23 24
from paddle import compat as cpt
from paddle.fluid import core
from paddle.fluid import framework
from paddle.fluid import backward
25
from paddle.fluid import unique_name
26 27
from paddle.fluid.dygraph import layers
from paddle.fluid.layers import nn
28
from paddle.fluid.layers.utils import _hash_with_id
29
from paddle.fluid.dygraph.base import switch_to_static_graph
J
Jiabin Yang 已提交
30
from paddle.fluid.framework import _non_static_mode
31 32
from paddle.fluid.executor import _is_enable_standalone_executor, _is_dy2st_enable_standalone_executor
from paddle.fluid.dygraph.dygraph_to_static.partial_program import add_build_strategy_for, LazyInitialized
33
from paddle import _C_ops, _legacy_C_ops
34 35 36

__all__ = ['TranslatedLayer']

37 38 39
INFER_MODEL_SUFFIX = ".pdmodel"
INFER_PARAMS_SUFFIX = ".pdiparams"
INFER_PARAMS_INFO_SUFFIX = ".pdiparams.info"
40
INFER_PROPERTY_SUFFIX = '.meta'
41

42 43 44
LOADED_VAR_SUFFIX = "load"
PARAMETER_NAME_PREFIX = "param"
BUFFER_NAME_PREFIX = "buffer"
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120


def _load_program_desc(model_file_path):
    # 1. parse program desc
    with open(model_file_path, "rb") as f:
        program_desc_str = f.read()

    program_desc = core.ProgramDesc(program_desc_str)
    if not core._is_program_version_supported(program_desc._version()):
        raise ValueError("Unsupported program version: %d\n" %
                         program_desc._version())

    return program_desc


def _is_persistable(var_desc):
    if var_desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
            var_desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var_desc.type() == core.VarDesc.VarType.READER or \
            var_desc.type() == core.VarDesc.VarType.RAW:
        return False
    return var_desc.persistable()


def _is_parameter(persistable_var_desc, program_desc):
    # 1. firstly, param should be input of op
    input_ops = []  # op can be repeated
    for block_idx in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(block_idx)
        for op_idx in six.moves.range(block.op_size()):
            op = block.op(op_idx)
            # NOTE: parameter is the input of a certain op
            if persistable_var_desc.name() in op.input_arg_names():
                input_ops.append(op)
    # 2. secondly, param should not be output of op or be same op's output
    for block_idx in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(block_idx)
        for op_idx in six.moves.range(block.op_size()):
            op = block.op(op_idx)
            if persistable_var_desc.name() in op.output_arg_names():
                # such as batch_norm_op
                if op in input_ops:
                    continue
                else:
                    return False
    return True


def _get_persistable_vars(program_desc):
    persistable_vars = []
    for i in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(i)
        persistable_vars.extend(list(filter(_is_persistable, block.all_vars())))
    return persistable_vars


def _get_persistable_var_names(program_desc):
    """
    Get all persistable variable names in ProgramDesc.
    """
    var_names = []
    persistable_vars = _get_persistable_vars(program_desc)
    for var in persistable_vars:
        var_names.append(var.name())
    return var_names


def _get_all_var_names(program_desc):
    all_var_names = set()
    for i in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(i)
        for var in block.all_vars():
            all_var_names.add(var.name())
    return all_var_names


121
@switch_to_static_graph
122 123 124
def _append_loaded_suffix(name):
    """
    Append loaded suffix to the given variable name
125
    e.g. x ==> x.load_0, x.load_0 ==> x.load_0.load_0
126
    """
127 128 129
    suffix = LOADED_VAR_SUFFIX
    new_name = unique_name.generate_with_ignorable_key('.'.join((name, suffix)))
    return new_name
130 131


132 133 134
@switch_to_static_graph
def _generate_unique_var_name(prefix):
    return unique_name.generate_with_ignorable_key(prefix)
135 136 137


def _append_loaded_suffix_to_var(program_desc):
138
    suffix_varname_dict = dict()
139 140 141 142
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        old_name = var_desc.name()
        new_name = _append_loaded_suffix(var_desc.name())
143
        suffix_varname_dict[new_name] = old_name
144 145 146
        var_desc.set_name(new_name)
        for block_idx in six.moves.range(program_desc.num_blocks()):
            block = program_desc.block(block_idx)
147
            block._rename_var(old_name.encode(), new_name.encode())
148 149 150 151
            for op_idx in six.moves.range(block.op_size()):
                op = block.op(op_idx)
                op._rename_input(old_name, new_name)
                op._rename_output(old_name, new_name)
152
    return suffix_varname_dict
153 154


155 156 157 158 159 160 161 162 163 164 165 166 167 168
@switch_to_static_graph
def _generate_unique_var_name_sync_with_main_program(prefix):
    return unique_name.generate(prefix)


def _get_loaded_var_new_old(program_desc, all_new_old_dict_all):
    new_old_dict = dict()
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        name_new = var_desc.name()
        new_old_dict[name_new] = all_new_old_dict_all[name_new]
    return new_old_dict


W
WeiXin 已提交
169
def _rename_var_program_desc(program_desc, include=None, exclude=None):
170
    """
171 172 173 174 175 176 177 178
    Change the name of the loaded variables.Use 'unique_name.generate' to avoid duplication.
    It is used when loading multiple program during inference.

    e.g. linear_0.tmp_3 ==> linear_0.tmp_1, x ==> x_0. For double grad, x@GRAD ==> x_0@GRAD
    If 'include' is not `None`,variables in include and the corresponding
      double grad variables (if exist) are renamed.
    If 'exclude' is not `None`,variables that are in exclude and the
      corresponding double grad variables (if exist) are not renamed.
W
WeiXin 已提交
179 180 181 182 183

    Args:
        program_desc(ProgramDesc):the variables in it will be modified.
        include(List):list of names of variables.
        exclude(List):list of names of variables.
184 185 186 187 188

    Returns:
        tuple of (dict_rename_var_new_old, dict_rename_var_old_new)
        dict_rename_var_new_old is a dict mapping from new name to old name
        dict_rename_var_old_new is a dict mapping from old name to new name
189 190 191 192
    """
    dict_rename_var_old_new = dict()
    dict_rename_var_new_old = dict()
    old_names = []
193
    # Store all old names
194 195 196 197
    for b_idx in six.moves.range(program_desc.num_blocks()):
        cur_block = program_desc.block(b_idx)
        for var in cur_block.all_vars():
            old_names.append(var.name())
198 199 200 201

    # Create dict_rename_var_new_old and dict_rename_var_old_new for non double
    # grad variables
    has_double_grad = False
202 203 204 205
    for b_idx in six.moves.range(program_desc.num_blocks()):
        cur_block = program_desc.block(b_idx)
        for var_idx, var in enumerate(cur_block.all_vars()):
            name_old = var.name()
206 207
            is_double_grad_var = "@GRAD" in name_old
            has_double_grad = has_double_grad or is_double_grad_var
W
WeiXin 已提交
208
            should_rename = (include is None or name_old in include) and (
209 210
                exclude is None
                or name_old not in exclude) and not is_double_grad_var
W
WeiXin 已提交
211
            if should_rename:
212 213 214 215
                temp_name = name_old.split('_')
                if len(temp_name) > 1 and temp_name[-1].isnumeric():
                    temp_name = "_".join(temp_name[:-1])
                else:
W
WeiXin 已提交
216 217 218 219 220 221 222 223 224
                    temp_name = name_old
                while True:
                    name_new = _generate_unique_var_name_sync_with_main_program(
                        temp_name)
                    if name_new not in old_names[:var_idx] + old_names[var_idx +
                                                                       1:]:
                        break
            else:
                name_new = name_old
225
            if name_old != name_new:
226
                cur_block._rename_var(name_old.encode(), name_new.encode())
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
            if not is_double_grad_var:
                dict_rename_var_old_new[name_old] = name_new
                dict_rename_var_new_old[name_new] = name_old

    # Handle double grad names
    if has_double_grad:
        double_grad_rename_dict = {}
        for name_old in dict_rename_var_old_new:
            for b_idx in six.moves.range(program_desc.num_blocks()):
                cur_block = program_desc.block(b_idx)
                for var_idx, var in enumerate(cur_block.all_vars()):
                    var_name = var.name()
                    if "@GRAD" in var_name and name_old in var_name:
                        new_var_name = var_name.replace(
                            name_old, dict_rename_var_old_new[name_old])
                        double_grad_rename_dict[var_name] = new_var_name
        for var_name in double_grad_rename_dict:
            dict_rename_var_old_new[var_name] = double_grad_rename_dict[
                var_name]
246 247
            dict_rename_var_new_old[
                double_grad_rename_dict[var_name]] = var_name
248 249

    # Rename on program desc
250 251 252 253 254 255
    for b_idx in six.moves.range(program_desc.num_blocks()):
        cur_block = program_desc.block(b_idx)
        for op_idx in six.moves.range(cur_block.op_size()):
            op = cur_block.op(op_idx)
            for input_arg_name in op.input_arg_names():
                if input_arg_name in dict_rename_var_old_new:
256
                    if input_arg_name != dict_rename_var_old_new[input_arg_name]:
257 258 259
                        op._rename_input(
                            input_arg_name,
                            dict_rename_var_old_new[input_arg_name])
260
                        if cur_block.has_var(input_arg_name.encode()):
261
                            cur_block._rename_var(
262 263 264
                                input_arg_name.encode(),
                                dict_rename_var_old_new[input_arg_name].encode(
                                ))
265 266 267 268 269 270 271
            for output_arg_name in op.output_arg_names():
                if output_arg_name in dict_rename_var_old_new:
                    if output_arg_name != dict_rename_var_old_new[
                            output_arg_name]:
                        op._rename_output(
                            output_arg_name,
                            dict_rename_var_old_new[output_arg_name])
272
                        if cur_block.has_var(output_arg_name.encode()):
273
                            cur_block._rename_var(
274 275 276
                                output_arg_name.encode(),
                                dict_rename_var_old_new[output_arg_name].encode(
                                ))
277 278 279 280
    program_desc.flush()
    return dict_rename_var_new_old, dict_rename_var_old_new


281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
        framework.Block(prog, i)
        for i in six.moves.range(prog.desc.num_blocks())
    ]
    prog._sync_with_cpp()
    return prog


def _change_is_test_status(program_desc, is_test):
    # change all `is_test` attributes
    for i in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(i)
        for j in six.moves.range(block.op_size()):
            op = block.op(j)
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)


class _ProgramHolder(object):
    """
    Holds the execution information of a Program.

307 308
    _ProgramHolder is the execution unit of TranslatedLayer,
    if TranslatedLayer contains multiple _ProgramHolder,
309 310 311 312 313 314 315 316
    it can execute multiple methods

    _ProgramHolder is an internal concept.
    """

    def __init__(self, program_desc):
        super(_ProgramHolder, self).__init__()

317
        # input, output, persistable, double_grads var info
318
        self._input_descs = []
319
        self._output_descs = []
320
        self._double_grad_descs = []
321
        self._persistable_names = []
322 323 324 325

        # execution scope
        self._inner_scope = core.Scope()

326 327
        # append suffix var name dict
        self._suffix_varname_dict = None
328 329 330 331 332 333
        # forward program
        self._infer_program_desc = self._preprocess(program_desc)
        # forward + backward program
        self._train_program_desc = self._append_backward_desc(
            self._infer_program_desc)

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    # forward:
    @switch_to_static_graph
    def _create_forward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        end_op_index = self._infer_program_desc.block(0).op_size()
        if end_op_index > 0:
            return add_build_strategy_for(whole_program, 0, end_op_index)
        else:
            return whole_program

    @LazyInitialized
    def _forward_program_desc(self):
        return self._create_forward_train_program().desc

    # backward
    @switch_to_static_graph
    def _create_backward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        start_op_index = self._infer_program_desc.block(0).op_size() + 2 * len(
            self._output_descs)
        end_op_index = whole_program.desc.block(0).op_size()
        if (start_op_index < end_op_index):
            return add_build_strategy_for(whole_program, start_op_index,
                                          end_op_index)
        else:
            return paddle.static.Program()

    @LazyInitialized
    def _backward_program_desc(self):
        return self._create_backward_train_program().desc

365 366 367 368 369 370 371 372
    @property
    def infer_program(self):
        return self._infer_program_desc

    @property
    def train_program(self):
        return self._train_program_desc

373 374 375 376 377 378 379 380
    @property
    def forward_program(self):
        return self._forward_program_desc

    @property
    def backward_program(self):
        return self._backward_program_desc

381
    @property
382 383
    def input_descs(self):
        return self._input_descs
384 385

    @property
386
    def output_descs(self):
387 388 389 390 391 392
        return self._output_descs

    @property
    def persistable_names(self):
        return self._persistable_names

393 394 395 396
    @property
    def double_grad_descs(self):
        return self._double_grad_descs

397 398 399 400 401
    @property
    def scope(self):
        return self._inner_scope

    def _preprocess(self, program_desc):
W
WeiXin 已提交
402 403
        # rename persistable variables of 'program_desc'
        list_persistable_var = _get_persistable_var_names(program_desc)
404 405
        rename_new_old_dict, _ = _rename_var_program_desc(
            program_desc, list_persistable_var)
406 407 408 409 410 411 412 413
        # 1. Prune original program
        # remove feed, fetch and scale-1 op, remove op_callstack attr
        ops_to_remove = []
        root_block = program_desc.block(0)
        for i in six.moves.range(root_block.op_size()):
            op = root_block.op(i)
            if op.type() == 'feed':
                ops_to_remove.append(i)
414
                feed_var_name = op.input('X')[0].encode()
415
                root_block._remove_var(feed_var_name)
416
                self._input_descs.append(
417
                    root_block.find_var(op.output('Out')[0].encode()))
418 419 420
            elif op.type() == 'scale' and op.output('Out')[0].startswith(
                    'save_infer_model/scale_'):
                ops_to_remove.append(i)
421
                out_var_name = op.output('Out')[0].encode()
422 423
                root_block._remove_var(out_var_name)
                self._output_descs.append(
424
                    root_block.find_var(op.input('X')[0].encode()))
425 426
            elif op.type() == 'fetch':
                ops_to_remove.append(i)
427
                fetch_var_name = op.output('Out')[0].encode()
428 429 430 431
                root_block._remove_var(fetch_var_name)
                # NOTE: some old pre-train models have no extra scale_op
                if not op.input('X')[0].startswith('save_infer_model/scale_'):
                    self._output_descs.append(
432
                        root_block.find_var(op.input('X')[0].encode()))
433 434 435 436 437 438 439
            else:
                if op.has_attr("op_callstack"):
                    op.remove_attr("op_callstack")

        for op_idx in reversed(ops_to_remove):
            root_block._remove_op(op_idx, op_idx + 1)

440 441 442 443 444 445
        for i in range(program_desc.num_blocks()):
            block_desc = program_desc.block(i)
            for var_desc in block_desc.all_vars():
                if "@GRAD" in var_desc.name():
                    self._double_grad_descs.append(var_desc)

446
        # 2. Input processing, reverse feed vars
447
        self._input_descs.reverse()
448 449 450 451

        # 3. Output processing, add scale for outputs
        tmp_program = _build_program_by_desc(program_desc)
        # NOTE: [why need append scale for outputs]
452 453 454 455 456
        # When dealing with some more complex pre-training models, there
        # will be situations where the pre-training model has multiple
        # fetch outputs. In the scenario of multiple fetch outputs,
        # there is a special case where multiple outputs of the model
        # may be on the same branch. According to the user's subsequent
457
        # use, multiple outputs may be associated with multiple branches.
458 459 460 461
        # These subsequent operations are added in TranslatedLayer is
        # agnostic during initialization, which results in subsequent
        # gradient accumulation operations that are required on the
        # output node in the middle of the branch will not be performed,
462 463 464 465 466
        # resulting in error, details see pull request:
        # [https://github.com/PaddlePaddle/Paddle/pull/24627]
        self._append_scale_to_output(tmp_program)

        # 4. Persistable vars processing
467
        # - append loaded suffix to persistable vars
468
        # NOTE: [why need to append suffix to persistable vars]
469 470 471 472 473 474
        # Dygraph and static graph mode use the same naming mechanism.
        # If users want to load the model fine-tune, it is possible
        # to add the existing Layer in the loaded model to enhance
        # the network. For example, the original saved model has linear,
        # and later after loading, a new linear is added. At this time,
        # there will be a problem of duplicate names, so here is unified
475
        # to add the LOADED suffix to the parameters of the model loaded
476 477
        self._suffix_varname_dict = _get_loaded_var_new_old(
            program_desc, rename_new_old_dict)
478

479 480 481 482 483 484 485 486 487 488 489 490
        # - get persistable var
        self._persistable_names = _get_persistable_var_names(program_desc)

        return program_desc

    @switch_to_static_graph
    def _append_scale_to_output(self, program):
        # 1. append scale & save var
        scale_output_vars = []
        with framework.program_guard(program):
            for i, out in enumerate(self._output_descs):
                var = program.global_block().var(out.name())
491 492 493
                var = nn.scale(var,
                               1.,
                               name="translated_layer/scale_{}".format(i))
494 495 496 497 498 499
                scale_output_vars.append(var)
        # 2. update output names & descs
        for i, var in enumerate(scale_output_vars):
            self._output_descs[i] = var.desc

    @switch_to_static_graph
500
    def _get_train_forward_program(self, infer_program_desc):
501 502 503 504 505 506 507 508
        program_desc_copy = core.ProgramDesc(infer_program_desc)

        # 1. set all `is_test` attributes to False
        _change_is_test_status(program_desc_copy, False)

        # 2. prepare program and related var
        # NOTE: To reuse backward interfaces, build Program firstly.
        # Originally, there is no need to build a program, but need to almost
509
        # rewrite a series of methods for append_backward for program_desc.
510 511
        # Therefore, in order to reuse the method of backward.py, build the program here.
        program = _build_program_by_desc(program_desc_copy)
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
        # 3. Add the outputs which is only used for training and not saved in
        # inference program.
        for block_idx in six.moves.range(program.num_blocks):
            block = program.block(block_idx)
            for op in block.ops:
                if op.type == "batch_norm":
                    if "ReserveSpace" not in op.output_names or len(
                            op.output("ReserveSpace")) == 0:
                        reserve_space = block.create_var(
                            name=unique_name.generate_with_ignorable_key(
                                ".".join(["reserve_space", 'tmp'])),
                            dtype=block.var(op.input("X")[0]).dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=True)
                        op.desc.set_output("ReserveSpace", [reserve_space.name])
528 529 530 531 532
        return program

    @switch_to_static_graph
    def _append_backward_desc(self, infer_program_desc):
        program = self._get_train_forward_program(infer_program_desc)
533

534 535 536 537 538 539 540 541 542 543
        targets = []
        for out in self._output_descs:
            targets.append(program.global_block().var(out.name()))

        # 3. append backward
        backward.gradients(targets=targets, inputs=[])
        return program.desc


# [ TranslatedLayer : Run program in imperative mode ]
544
#
545 546 547 548 549 550 551
# DESIGN IDEA: using an special operator `RunProgram`, execute program inside operator.
#
# Op's Inputs:
#   - the input variable of the user feed
#   - the necessary parameters of the network
# Op's Outputs:
#   - the output variable of fetch
552
#
553 554 555
# This op receives a complete program desc, internally creates scope
# and executor, executes this program. Key points:
#
556
# 1. Data Sharing:
557 558 559 560
#   The varBase of the dynamic graph is not in the scope, so before the op
#   executes the program internally, create persistent variables with the
#   same name as feed, parameters, and fetch in the scope, and share the
#   LoDTensor of the op input.
561
#
562 563 564 565
# 2. Forward and Backward Separation:
#   Because the dynamic graph op performs the forward and backward separately,
#   in the forward op RunProgram, we only execute the forward part of whole program,
#   and in the backward op RunProgramGrad, we execute the backward part of program.
566
#   We can not separate the program into forward and backward part, which will
567 568 569 570 571 572 573 574 575 576 577 578
#   make some control flow execution logic wrong.


# NOTE: [compatible] deal with model saved by save_inference_model,
# which need get var info from program desc
def _load_persistable_vars_by_program(model_path,
                                      program_holder,
                                      params_filename=None):
    # make sure the path has been checked
    persistable_vars = _get_persistable_vars(program_holder.infer_program)
    load_var_dict = {}
    for each_var in persistable_vars:
579
        orig_each_name = program_holder._suffix_varname_dict[each_var.name()]
580 581
        if _is_parameter(each_var, program_holder.infer_program):
            # create output varbase
J
Jiabin Yang 已提交
582
            if framework._in_eager_without_dygraph_check():
583 584 585 586 587
                new_var = framework.EagerParamBase(shape=each_var.shape(),
                                                   dtype=each_var.dtype(),
                                                   name=each_var.name(),
                                                   type=each_var.type(),
                                                   persistable=True)
588
            else:
589 590 591 592 593
                new_var = framework.ParamBase(shape=each_var.shape(),
                                              dtype=each_var.dtype(),
                                              name=each_var.name(),
                                              type=each_var.type(),
                                              persistable=True)
594
        else:
595 596 597 598 599
            new_var = framework._varbase_creator(type=each_var.type(),
                                                 name=each_var.name(),
                                                 shape=each_var.shape(),
                                                 dtype=each_var.dtype(),
                                                 persistable=True)
600 601 602 603 604 605 606 607 608 609 610
        if params_filename is None:
            framework._dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
                attrs={'file_path': os.path.join(model_path, orig_each_name)})
        new_var.stop_gradient = False
        load_var_dict[each_var.name()] = new_var

    if params_filename is not None:
        load_var_list = []
611 612 613 614 615 616
        dict_name_old_new = {
            v: k
            for k, v in program_holder._suffix_varname_dict.items()
        }
        for name in sorted(dict_name_old_new.keys()):
            load_var_list.append(load_var_dict[dict_name_old_new[name]])
617 618 619 620 621 622 623 624 625 626 627 628 629 630

        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
            attrs={'file_path': os.path.join(model_path, params_filename)})

        for each_var in persistable_vars:
            if not _is_parameter(each_var, program_holder.infer_program):
                continue
            param = load_var_dict[each_var.name()]
            param.stop_gradient = False

    # NOTE: [Recovery stop gradient information based on the program]
631
    # After loading the model, the stop_gradient information
632 633 634 635 636 637 638 639 640 641 642 643
    # of the original variable is lost, but if a parameter does not
    # have a corresponding @GRAD variable in the backward program,
    # it can be said that it is also stop_gradient
    all_var_names = _get_all_var_names(program_holder.train_program)
    for var_name in load_var_dict:
        grad_var_name = var_name + core.grad_var_suffix()
        if grad_var_name not in all_var_names:
            load_var_dict[var_name].stop_gradient = True

    return load_var_dict


644 645
def _load_persistable_vars(model_path, var_info_path, program_holder,
                           params_filename):
646 647
    # 1. load extra var info
    with open(var_info_path, 'rb') as f:
648
        extra_var_info = pickle.load(f)
649 650 651 652

    # 2. construct var dict
    load_var_dict = dict()
    load_var_list = []
653 654 655 656
    inv_suffix_varname_dict = {
        value: key
        for key, value in program_holder._suffix_varname_dict.items()
    }
657 658 659

    # NOTE(chenweihang): we need load persistable vars based the program,
    # because the program may be pruned when `save_inference_model`, some
660
    # var in `extra_var_info` may have been pruned
661 662 663 664 665 666
    for name in sorted(inv_suffix_varname_dict):
        if name not in extra_var_info:
            raise RuntimeError(
                "The model to be loaded is not complete."
                "The variable `%s` of program cannot be found in loaded model.",
                name)
667 668
        # get suffix var name, see [why need to append suffix to persistable vars]
        new_name = inv_suffix_varname_dict[name]
669 670 671
        # create output varbase
        if extra_var_info[name].get('trainable', None) is not None:
            # use default shape and dtype
J
Jiabin Yang 已提交
672
            if framework._in_eager_without_dygraph_check():
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
                new_var = framework.EagerParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
                    persistable=True)
            else:
                new_var = framework.ParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
                    persistable=True)
688
        else:
689 690
            new_var = framework._varbase_creator(name=new_name,
                                                 persistable=True)
691 692 693 694 695 696

        new_var.stop_gradient = extra_var_info[name]['stop_gradient']
        load_var_dict[new_name] = new_var
        load_var_list.append(new_var)

    # 3. load all vars
697 698 699 700 701 702
    assert params_filename is not None, "params_filename should not be None."
    var_file_path = os.path.join(model_path, params_filename)
    if not os.path.exists(var_file_path):
        if len(extra_var_info) != 0:
            raise ValueError("The model to be loaded is incomplete.")
    else:
703 704 705 706
        framework._dygraph_tracer().trace_op(type='load_combine',
                                             inputs={},
                                             outputs={'Out': load_var_list},
                                             attrs={'file_path': var_file_path})
707 708 709 710

    return load_var_dict


711 712 713 714 715 716 717 718 719
# NOTE(chenweihang): to adapt paddle.load to get state_dict
def _remove_varname_suffix(var_dict, program_holder):
    no_suffix_var_dict = dict()
    for var_name in var_dict:
        no_suffix_name = program_holder._suffix_varname_dict[var_name]
        no_suffix_var_dict[no_suffix_name] = var_dict[var_name]
    return no_suffix_var_dict


720 721 722 723 724 725 726 727
def _construct_program_holders(model_path, model_filename=None):
    # make sure the path has been checked
    program_holder_dict = dict()

    if model_filename is not None:
        # [compatible] if assign model_filename, only can load one program as Layer.forward
        model_filename = os.path.basename(model_filename)
        model_file_path = os.path.join(model_path, model_filename)
728 729 730 731 732 733 734 735
        model_name = model_filename[:-len(INFER_MODEL_SUFFIX)]
        #Load every file that meets the requirements in the directory model_path.
        for filename in os.listdir(model_path):
            if model_filename == filename:
                func_name = 'forward'
                model_file_path = os.path.join(model_path, model_filename)
            elif filename.endswith(INFER_MODEL_SUFFIX) and filename.startswith(
                    model_name):
736 737 738
                parsing_names = filename[len(model_name
                                             ):-len(INFER_MODEL_SUFFIX) +
                                         1].split('.')
739 740 741 742 743
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                    model_file_path = os.path.join(model_path, filename)
                else:
                    continue
744 745 746 747
            else:
                continue
            program_holder_dict[func_name] = _ProgramHolder(
                _load_program_desc(model_file_path))
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
    else:
        for _, _, file_names in os.walk(model_path):
            for name in file_names:
                if 'model' in name:
                    model_file_path = os.path.join(model_path, name)
                    method_name = name.strip('_')
                    if method_name == 'model':
                        method_name = 'forward'
                    else:
                        method_name.replace('model', '')
                    program_holder_dict[method_name] = _ProgramHolder(
                        _load_program_desc(model_file_path))

    return program_holder_dict


def _construct_params_and_buffers(model_path,
                                  programs,
766 767
                                  params_filename=None,
                                  append_suffix=True):
768 769
    var_info_filename = str(params_filename) + ".info"
    var_info_path = os.path.join(model_path, var_info_filename)
770
    params_path = os.path.join(model_path, str(params_filename))
771

772 773
    if os.path.exists(var_info_path):
        var_dict = _load_persistable_vars(model_path, var_info_path,
774
                                          programs['forward'], params_filename)
775 776 777
        model_name = params_filename[:-len(INFER_PARAMS_SUFFIX)]
        #Load every file that meets the requirements in the directory model_path.
        for file_name in os.listdir(model_path):
778 779
            if file_name.startswith(model_name) and file_name.endswith(
                    INFER_PARAMS_SUFFIX):
780 781 782
                parsing_names = file_name[len(model_name
                                              ):-len(INFER_PARAMS_SUFFIX) +
                                          1].split('.')
783 784 785 786
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                else:
                    continue
787 788 789 790
            else:
                continue
            var_info_path = os.path.join(model_path, var_info_filename)
            var_dict.update(
791 792
                _load_persistable_vars(model_path, var_info_path,
                                       programs[func_name], file_name))
793 794 795
    elif params_filename is not None and not os.path.exists(params_path):
        # When saving XX, there is only '*.pdmodel'
        return dict()
796
    else:
797 798 799
        var_dict = _load_persistable_vars_by_program(model_path,
                                                     programs['forward'],
                                                     params_filename)
800 801 802 803

    if not append_suffix:
        var_dict = _remove_varname_suffix(var_dict, programs['forward'])

804 805 806
    return var_dict


0
0x45f 已提交
807 808 809
def _valid_vars(vars):
    if vars:
        return vars
J
Jiabin Yang 已提交
810
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
811 812 813 814 815 816 817 818 819 820 821
        return [
            core.eager.Tensor(core.VarDesc.VarType.FP32, [], "Fake_var",
                              core.VarDesc.VarType.RAW, False)
        ]
    else:
        return [
            core.VarBase(core.VarDesc.VarType.FP32, [], "Fake_var",
                         core.VarDesc.VarType.RAW, False)
        ]


W
WeiXin 已提交
822 823 824 825 826
def _run_dygraph(instance, input, program_holder):

    # 1. prepare inputs, outputs, attrs
    input_vars = []
    for i, value in enumerate(input):
827
        if not isinstance(value, (np.ndarray, core.VarBase, core.eager.Tensor)):
W
WeiXin 已提交
828 829 830 831 832
            raise TypeError(
                "The type of input in TranslatedLayer must be numpy array or Variable(VarBase), but received %s."
                % type(value))
        # NOTE: In order to unify the API, firstly convert the input to VarBase
        if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
833
            if framework._in_eager_without_dygraph_check():
834 835 836 837 838 839 840
                var = core.eager.Tensor(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
                    zero_copy=True)
            else:
841 842 843 844 845
                var = core.VarBase(value=value,
                                   name=program_holder.input_descs[i].name(),
                                   persistable=False,
                                   place=framework._current_expected_place(),
                                   zero_copy=True)
W
WeiXin 已提交
846 847
        else:
            var = value
848
            # NOTE: we changed var name here,
W
WeiXin 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
            # but it may be an important name set by user
            var.name = program_holder.input_descs[i].name()
        input_vars.append(var)
    if instance._input_args_names is None:
        instance._input_args_names = [
            ins.name() for ins in program_holder.input_descs
        ]

    persistable_vars = []
    for var_name in program_holder.persistable_names:
        dy_var_name = instance._persistable_var_name_dict[var_name]
        if dy_var_name in instance._parameters:
            persistable_vars.append(instance._parameters[dy_var_name])
        elif dy_var_name in instance._buffers:
            persistable_vars.append(instance._buffers[dy_var_name])
        else:
            raise ValueError(
                "The persistable variable %s does not exist in current TranslatedLayer."
                % var_name)

    output_vars = []
    for var_desc in program_holder.output_descs:
J
Jiabin Yang 已提交
871
        if framework._in_eager_without_dygraph_check():
872 873 874 875 876
            var = core.eager.Tensor(dtype=var_desc.dtype(),
                                    dims=var_desc.shape(),
                                    name=var_desc.name(),
                                    type=var_desc.type(),
                                    persistable=False)
877
        else:
878
            var = core.VarBase(var_desc.dtype(), var_desc.shape(),
879
                               var_desc.name(), var_desc.type(), False)
W
WeiXin 已提交
880 881 882
        output_vars.append(var)

    # hold forward variables
J
Jiabin Yang 已提交
883
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
884
        tmp_scope_vec = [program_holder.scope]
885 886 887 888
    else:
        tmp_scope_vec = core.VarBase(core.VarDesc.VarType.FP32, [],
                                     "program_out_scope",
                                     core.VarDesc.VarType.STEP_SCOPES, True)
0
0x45f 已提交
889
        tmp_scope_vec.value().set_scope(program_holder.scope)
W
WeiXin 已提交
890

891 892
    double_grad_vars = []
    for var_desc in program_holder.double_grad_descs:
J
Jiabin Yang 已提交
893
        if framework._in_eager_without_dygraph_check():
894 895 896 897 898
            var = core.eager.Tensor(dtype=var_desc.dtype(),
                                    dims=var_desc.shape(),
                                    name=var_desc.name(),
                                    type=var_desc.type(),
                                    persistable=False)
899
        else:
900
            var = core.VarBase(var_desc.dtype(), var_desc.shape(),
901
                               var_desc.name(), var_desc.type(), False)
902 903
        double_grad_vars.append(var)

W
WeiXin 已提交
904 905
    # 2. run program by op
    trace_program = program_holder.infer_program if instance._is_test else program_holder.train_program
906
    forward_program = program_holder._infer_program_desc if instance._is_test else program_holder.forward_program
W
WeiXin 已提交
907
    end_op_index = program_holder.infer_program.block(0).op_size()
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923

    attrs = [
        'global_block',
        trace_program.block(0), 'start_op_index', 0, 'end_op_index',
        end_op_index, 'is_test', instance._is_test, 'program_id',
        _hash_with_id(trace_program, instance)
    ]

    use_interpretorcore = _is_enable_standalone_executor(
    ) and _is_dy2st_enable_standalone_executor()
    attrs.extend(('use_interpretorcore', use_interpretorcore))
    if use_interpretorcore:
        attrs.extend(
            ('forward_global_block', forward_program.block(0),
             'backward_global_block', program_holder.backward_program.block(0)))

924 925 926 927
    _legacy_C_ops.run_program(_valid_vars(input_vars),
                              _valid_vars(persistable_vars),
                              _valid_vars(output_vars), tmp_scope_vec,
                              _valid_vars(double_grad_vars), None, *attrs)
928

W
WeiXin 已提交
929 930 931 932 933 934 935 936
    # NOTE: [ why need set param's gradient type here ]
    # if user set sparse gradient mode, the param's gradient
    # will be SelectedRows, not LoDTensor. But tracer will just
    # set param grad VarBase by forward VarBase(LoDTensor)
    # If we don't change grad_var type here, RunProgramOp need
    # transform SelectedRows to LoDTensor forcibly, it may not
    # be user wanted result.
    for persistable_var in persistable_vars:
0
0x45f 已提交
937
        grad_var_name = persistable_var.name + core.grad_var_suffix()
938
        grad_var = trace_program.block(0).find_var(grad_var_name.encode())
939
        # NOTE: cannot find var desc maybe not problem,
W
WeiXin 已提交
940 941 942 943 944
        # such as in batch_norm
        if grad_var is None:
            continue
        persistable_var._set_grad_type(grad_var.type())

945 946
    drop_scope_if_no_grad(instance, tmp_scope_vec)

W
WeiXin 已提交
947 948 949 950 951 952 953
    # 3. prepare output, keep same form with inputs
    outs = output_vars
    if len(output_vars) == 1:
        outs = output_vars[0]
    return outs


954 955
def drop_scope_if_no_grad(instance, scope_vec):
    tracer = framework._dygraph_tracer()
956 957
    scope = scope_vec.value().get_scope() if isinstance(
        scope_vec, (core.VarBase)) else scope_vec[0]
958
    if (not instance._is_test) and (not tracer._has_grad):
0
0x45f 已提交
959
        scope.drop_kids()
960 961


W
WeiXin 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
def _run_static_graph(input, program_holder, trace_program):
    main_program = framework.default_main_program()
    param_var_names = _get_persistable_var_names(trace_program)
    _, dict_rename_var_old_new = _rename_var_program_desc(
        trace_program, exclude=param_var_names)
    trace_program.flush()
    output_names = [var.name() for var in program_holder.output_descs]
    # append blocks from 'trace_program'
    _append_block(main_program, trace_program, program_holder, input,
                  dict_rename_var_old_new)
    main_program._sync_with_cpp()
    outs = _get_output_from_program(main_program, program_holder,
                                    dict_rename_var_old_new)
    if len(outs) == 1:
        outs = outs[0]
    return outs


def _collect_current_and_parent_var(program, block_idx):
    '''
    Get variables in current block and its parent block.
983

W
WeiXin 已提交
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    Args:
        program(Program): The program containing the current block.
        block_idx(int): index of current block.

    Returns:
        List: list of variables.
    '''
    vars = []
    if block_idx < 0:
        return vars
    for var in program.block(block_idx).vars:
        vars.append(var)
    parent_idx = program.block(block_idx).parent_idx
    if parent_idx > -1:
        vars += _collect_current_and_parent_var(program, parent_idx)
    return vars


def _append_block(dest_program,
                  src_program_desc,
                  program_holder,
                  input_variables,
                  dict_rename_var_old_new=None):
    '''
    Append Variables and Operators in 'src_program_desc' to dest_program.
1009

W
WeiXin 已提交
1010 1011 1012 1013 1014
    Args:
        dest_program(Program): Variables and Operators are appended to it.
        src_program_desc(ProgramDesc): Variables in it will be appended to 'dest_program'.
        program_holder(_ProgramHolder): program_holder of TranslatedLayer
        input_variables(list): list of input variables
1015
        dict_rename_var_old_new(None|dict): When using '_rename_var_program_desc',
W
WeiXin 已提交
1016 1017 1018 1019 1020 1021
        use it to map the name of the variable before it was modified and the new name.
    '''

    origin_block_idx = dest_program.current_block_idx
    param_var_names = _collect_current_and_parent_var(dest_program,
                                                      origin_block_idx)
1022 1023 1024
    append_var_from_block_desc_static(dest_program.block(origin_block_idx),
                                      src_program_desc.block(0),
                                      exclude=param_var_names)
W
WeiXin 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

    name_inp_desc = [inp.name() for inp in program_holder.input_descs]
    input_names = [inp.name for inp in input_variables]
    if len(name_inp_desc) != len(input_names):
        raise ValueError(
            "The number of input is invalid, expected {}, but received {}.".
            format(len(name_inp_desc), len(input_names)))
    for i, out_name in enumerate(name_inp_desc):
        if dict_rename_var_old_new:
            out_name = dict_rename_var_old_new[out_name]
        dest_program.block(origin_block_idx).append_op(
            type='assign',
            inputs={'X': [input_names[i]]},
            outputs={'Out': [out_name]})

    append_ops = append_op_from_block_desc_static(
        dest_program.block(origin_block_idx), src_program_desc.block(0))
    dest_program._sync_with_cpp()

    offset_block_idx = dest_program.num_blocks - 1

    if src_program_desc.num_blocks() > 1:
        for src_block_idx in range(1, src_program_desc.num_blocks()):
            src_block = src_program_desc.block(src_block_idx)
            src_parent_idx = src_block.parent
            if src_parent_idx > 0:
                parent_idx = offset_block_idx + parent_idx
            else:
                parent_idx = origin_block_idx
            dest_block = dest_program._create_block(parent_idx=parent_idx)
1055 1056 1057 1058 1059
            append_var_from_block_desc_static(dest_block,
                                              src_block,
                                              exclude=param_var_names)
            append_ops += append_op_from_block_desc_static(
                dest_block, src_block)
W
WeiXin 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

    dest_program._sync_with_cpp()
    for op in append_ops:
        if op.has_attr('sub_block'):
            sub = op.attr('sub_block')
            if isinstance(sub, framework.core.BlockDesc):
                origin_id = sub.id
            if isinstance(sub, framework.Block):
                origin_id = sub.idx
            op._set_attr('sub_block',
                         dest_program.block(offset_block_idx + origin_id))
    dest_program._sync_with_cpp()
    dest_program.current_block_idx = origin_block_idx


def _get_output_from_program(program,
                             program_holder,
                             dict_rename_var_old_new=None):
    """
    Get output name of 'program' according to program_holder
    """
    outs = list()
    for var in program_holder.output_descs:
        for idx in range(program.num_blocks):
            vars = program.block(idx).vars
            var_name = var.name()
            if dict_rename_var_old_new:
                var_name = dict_rename_var_old_new[var_name]
            if var_name in vars:
                out = vars[var_name]
                if out not in outs:
                    outs.append(out)
    return outs


def append_op_from_block_desc_static(block, src_block_desc):
    """
    Append Operators of 'src_block_desc' to current block.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'

    Returns:
        List: list of the OP that are append to current block.
    """
    ops = []
    for i in range(src_block_desc.op_size()):
        ops.append(append_op_from_desc_static(block, src_block_desc.op(i)))
    return ops


def append_op_from_desc_static(block, op_desc):
    """
    Append Operators to 'block' according to 'op_desc'.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        op_desc(OpDesc): create OP according to it.

    Returns:
        Operator: OP appended to 'block'.
    """
    op_type = op_desc.type()
    op_append = block.desc.append_op()
    op_append.copy_from(op_desc)
1126 1127 1128 1129 1130 1131
    op = framework.Operator(block=block,
                            desc=op_append,
                            type=op_type,
                            inputs=None,
                            outputs=None,
                            attrs=None)
W
WeiXin 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    block.ops.append(op)
    return op


def append_var_from_block_desc_static(block,
                                      src_block_desc,
                                      include=None,
                                      exclude=None):
    """
    Append Variables of 'src_block_desc' to current block.
    If 'include' is not `None`,variables that are not in include are not append.
    If 'exclude' is not `None`,variables that are in exclude will are not append.

    Args:
        block(Block): append Variables of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'
        include(List):list of names of variables
        exclude(List):list of names of variables

    Returns:
        List: list of the variables that are append to current block.
    """
    vars_append = []
    for var_desc in src_block_desc.all_vars():
        var_desc_name = var_desc.name()
        should_append = (include is None or var_desc_name in include) and (
            exclude is None or var_desc_name not in exclude)
        if not block.has_var(var_desc_name) and should_append:
            var_type = var_desc.type()
            if var_type in [
                    core.VarDesc.VarType.SELECTED_ROWS,
                    core.VarDesc.VarType.LOD_TENSOR,
                    core.VarDesc.VarType.LOD_TENSOR_ARRAY
            ]:
                data_type = var_desc.dtype()
                var_shape = var_desc.shape()
            else:
                data_type = None
                var_shape = None
            if var_type in [
                    core.VarDesc.VarType.LOD_TENSOR,
                    core.VarDesc.VarType.LOD_TENSOR_ARRAY
            ]:
                lod_level = var_desc.lod_level()
            else:
                lod_level = None

1179 1180 1181 1182 1183
            if var_desc.persistable():
                current_block = block.program.global_block()
            else:
                current_block = block

W
WeiXin 已提交
1184
            vars_append.append(
1185
                current_block.create_var(
W
WeiXin 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
                    name=var_desc.name(),
                    dtype=data_type,
                    type=var_type,
                    shape=var_shape,
                    lod_level=lod_level,
                    persistable=var_desc.persistable(),
                    set_need_check_feed=var_desc.need_check_feed()))
    return vars_append


1196 1197
class TranslatedLayer(layers.Layer):
    """
1198 1199
    TranslatedLayer is a ``paddle.nn.Layer`` for holding the model
    loaded by :ref:`api_paddle_jit_load` . It can be used like a
1200
    general Layer object in eval or train mode.
1201

1202
    .. note:
1203
        The TranslatedLayer objects should not be created by constructor, it only can be loaded and constructed by :ref:`api_paddle_jit_load` .
1204 1205 1206 1207 1208

    Examples:
        .. code-block:: python

            import numpy as np
1209 1210 1211
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1212

1213 1214 1215
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1216

1217 1218 1219 1220 1221 1222 1223
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1224

1225 1226 1227 1228
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1229

1230 1231
                def __len__(self):
                    return self.num_samples
1232

1233 1234
            class LinearNet(nn.Layer):
                def __init__(self):
1235
                    super(LinearNet, self).__init__()
1236
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1237

1238
                @paddle.jit.to_static
1239 1240 1241
                def forward(self, x):
                    return self._linear(x)

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1253 1254
            # 1. train & save model.

1255 1256 1257 1258
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
1259

1260 1261 1262 1263 1264 1265 1266
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1267

1268 1269
            # train
            train(layer, loader, loss_fn, adam)
1270

1271
            # save
1272
            model_path = "linear.example.model"
1273
            paddle.jit.save(layer, model_path)
1274 1275

            # 2. load model as TranslatedLayer
1276 1277 1278 1279

            # load
            translated_layer = paddle.jit.load(model_path)

1280 1281
            # inference
            translated_layer.eval()
1282
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1283
            pred = translated_layer(x)
1284

1285 1286
            # fine-tune
            translated_layer.train()
1287 1288
            adam = opt.Adam(learning_rate=0.001, parameters=translated_layer.parameters())
            train(translated_layer, loader, loss_fn, adam)
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

    """

    def __init__(self, programs, persistable_vars):
        super(TranslatedLayer, self).__init__()

        if not isinstance(programs, dict):
            raise TypeError(
                "TranslatedLayer need to use _ProgramHolder's dict for initialization."
            )
        if not isinstance(persistable_vars, dict):
            raise TypeError(
1301
                "TranslatedLayer need to use persistable variable dict for initialization."
1302 1303 1304 1305
            )

        self._program_holder_dict = programs

1306 1307 1308 1309 1310 1311 1312 1313
        # NOTE(chenweihang): [ why not use var name directly? ]
        # When add parameter or buffer to Layer by follow apis,
        # the variable name can't contain `.`, beccause which may cause
        # AttributeError when access the newly added parameter or buffer
        # in the form of `self.**.**``, but the ParamBase or BarBase
        # name contains `.` originally, such as `linear_0.w_0`, so here
        # need to generate new var name for each var
        self._persistable_var_name_dict = dict()
1314 1315 1316
        # the TranslatedLayer object holded var names count started from 0
        with unique_name.guard():
            for name, var in persistable_vars.items():
1317 1318
                if isinstance(var,
                              (framework.ParamBase, framework.EagerParamBase)):
1319 1320 1321
                    dy_name = _generate_unique_var_name(PARAMETER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.add_parameter(dy_name, var)
1322
                elif isinstance(var, (core.VarBase, core.eager.Tensor)):
1323 1324 1325 1326 1327 1328 1329
                    dy_name = _generate_unique_var_name(BUFFER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.register_buffer(dy_name, var)
                else:
                    raise TypeError(
                        "Adding persistent variable which  to layer is not supported now"
                    )
1330 1331

        self._is_test = True
W
WeiXin 已提交
1332
        self._input_args_names = None
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

    @staticmethod
    @framework.dygraph_only
    def _construct(model_path, configs=None):
        # 0. dir and filename check
        model_path = os.path.normpath(model_path)
        if not os.path.isdir(model_path):
            raise ValueError("There is no directory named '%s'" % model_path)
        model_filename = None
        params_filename = None
        if configs is not None:
            model_filename = configs.model_filename
            params_filename = configs.params_filename

        # 1. load program desc & construct _ProgramHolder
        programs = _construct_program_holders(model_path, model_filename)

1350
        # 2. load layer parameters & buffers
1351 1352
        persistable_vars = _construct_params_and_buffers(
            model_path, programs, params_filename)
1353 1354 1355 1356 1357 1358

        # 3. construct TranslatedLayer object
        translated_layer = TranslatedLayer(programs, persistable_vars)

        # 4. create TranslatedLayer's execution method
        for method_name, program_holder in programs.items():
1359 1360 1361 1362
            if translated_layer._input_args_names is None:
                translated_layer._input_args_names = [
                    ins.name() for ins in program_holder.input_descs
                ]
1363 1364 1365 1366
            setattr(
                TranslatedLayer, method_name,
                TranslatedLayer._execution_method_creator(
                    method_name, program_holder))
1367 1368 1369 1370 1371 1372 1373 1374

        # 5. set TranslatedLayer's default mode to eval
        translated_layer.eval()

        return translated_layer

    @staticmethod
    def _execution_method_creator(method_name, program_holder):
1375

W
WeiXin 已提交
1376 1377 1378 1379
        def __i_m_p_l__(self, *input):
            program_holder = self._program_holder_dict[__i_m_p_l__.__name__]
            # When using jit.save, it runs in static graph mode.
            # Run in dynamic graph mode when the model is inferring.
J
Jiabin Yang 已提交
1380
            if _non_static_mode():
W
WeiXin 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
                return _run_dygraph(self, input, program_holder)
            else:
                # NOTE(weixin): [ why not use 'program_holder.infer_program' directly? ]
                # When use '_run_static_graph(input, program_holder, program_holder.infer_program)',
                # because '_run_static_graph' modifies 'ProgramDesc', 'OpDesc.op_size()' will return a very large wrong number.
                # A Segmentation fault error may occur if used 'p=ProgramDesc(program_holder.infer_program)'.
                p = framework.Program._construct_from_desc(
                    core.ProgramDesc(program_holder.infer_program))
                return _run_static_graph(input, program_holder, p.desc)

        __i_m_p_l__.__name__ = method_name
        return __i_m_p_l__
1393 1394 1395

    def train(self):
        self._is_test = False
1396
        self.training = True
1397 1398 1399

    def eval(self):
        self._is_test = True
1400
        self.training = False
1401 1402 1403 1404 1405 1406 1407 1408

    def program(self, method_name='forward'):
        """
        Gets translated program of specified method.

        Args:
            - method_name (string): mehtod name corresponding to the program
                to be obtained. Default: 'forward'.
1409

1410 1411 1412 1413 1414
        Returns:
            Program

        Examples:
            .. code-block:: python
1415

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
                import numpy as np
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                # define a random dataset
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples

                    def __getitem__(self, idx):
                        image = np.random.random([IMAGE_SIZE]).astype('float32')
                        label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                        return image, label

                    def __len__(self):
                        return self.num_samples

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                def train(layer, loader, loss_fn, opt):
                    for epoch_id in range(EPOCH_NUM):
                        for batch_id, (image, label) in enumerate(loader()):
                            out = layer(image)
                            loss = loss_fn(out, label)
                            loss.backward()
                            opt.step()
                            opt.clear_grad()
                            print("Epoch {} batch {}: loss = {}".format(
                                epoch_id, batch_id, np.mean(loss.numpy())))

                # create network
                layer = LinearNet()
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

                # create data loader
                dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
                loader = paddle.io.DataLoader(dataset,
                    batch_size=BATCH_SIZE,
                    shuffle=True,
                    drop_last=True,
                    num_workers=2)

                # train
                train(layer, loader, loss_fn, adam)

                # save
                model_path = "linear.example.model"
                paddle.jit.save(layer, model_path)

                # load
                translated_layer = paddle.jit.load(model_path)

                # get program
                program = translated_layer.program()
        """
        # 1. get program holder
1488
        program_holder = self._get_program_holder(method_name)
1489 1490 1491 1492 1493 1494 1495

        # 2. get inference program desc
        program_desc = program_holder.infer_program

        # 3. construct program
        program = _build_program_by_desc(program_desc)
        return program
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

    def _get_program_holder(self, method_name='forward'):
        program_holder = self._program_holder_dict.get(method_name, None)
        if program_holder is None:
            raise ValueError(
                "The method `%s` does not exist in loaded TranslatedLayer." %
                method_name)
        return program_holder

    def _input_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build input spec by input desc
        input_spec = []
        for var_desc in program_holder.input_descs:
1512 1513 1514
            spec = paddle.static.InputSpec(shape=var_desc.shape(),
                                           dtype=var_desc.dtype(),
                                           name=var_desc.name())
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
            input_spec.append(spec)

        return input_spec

    def _output_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build output spec by output desc
        output_spec = []
        for var_desc in program_holder.output_descs:
1526 1527
            # NOTE(chenweihang): InputSpec describes a tensor, not just input.
            # Maybe the name is not good enough. Here we use InputSpec to
1528
            # construct the description of Output tensor
1529 1530 1531
            spec = paddle.static.InputSpec(shape=var_desc.shape(),
                                           dtype=var_desc.dtype(),
                                           name=var_desc.name())
1532 1533 1534
            output_spec.append(spec)

        return output_spec