conv_compute_test.cc 9.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/conv_compute.h"
#include <gtest/gtest.h>
T
tensor-tang 已提交
17 18
#include <memory>
#include <utility>
T
tensor-tang 已提交
19 20 21 22 23 24 25 26
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

T
tensor-tang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
template <typename dtype>
void conv_compute_ref(const operators::ConvParam& param) {
  auto input = param.x;
  auto filter = param.filter;
  auto output = param.output;
  DDim input_dims = param.x->dims();
  DDim filter_dims = param.filter->dims();
  DDim output_dims = param.output->dims();
  std::vector<int> paddings = param.paddings;
  std::vector<int> strides = param.strides;
  std::vector<int> dilations = param.dilations;
  int groups = param.groups;

  auto input_data = param.x->data<float>();
  auto output_data = param.output->mutable_data<float>();
  auto filter_data = param.filter->mutable_data<float>();
  const float* bias_data = nullptr;
  if (param.bias != nullptr) {
    bias_data = param.bias->mutable_data<float>();
  }
  bool flag_bias = bias_data != nullptr;
  bool flag_relu = false;  // TODO(hong19860320) param.relu

  int num = input_dims[0];
  int chout = output_dims[1];
  int hout = output_dims[2];
  int wout = output_dims[3];

  int chin = input_dims[1];
  int hin = input_dims[2];
  int win = input_dims[3];
  int out_c_group = chout / groups;
  int in_c_group = chin / groups;

  int stride_h = strides[0];
  int stride_w = strides[1];
  int dilation_h = dilations[0];
  int dilation_w = dilations[1];
  int padding_h = paddings[0];
  int padding_w = paddings[1];
  int kernel_h = filter_dims[2];
  int kernel_w = filter_dims[3];

  for (int n = 0; n < num; ++n) {
    for (int g = 0; g < groups; ++g) {
      for (int oc = 0; oc < out_c_group; ++oc) {
        for (int oh = 0; oh < hout; ++oh) {
          for (int ow = 0; ow < wout; ++ow) {
            int out_idx = n * groups * out_c_group * hout * wout +
                          g * out_c_group * hout * wout + oc * hout * wout +
                          oh * wout + ow;
78 79 80
            output_data[out_idx] =
                flag_bias ? static_cast<float>(bias_data[g * out_c_group + oc])
                          : 0.f;
T
tensor-tang 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
            for (int ic = 0; ic < in_c_group; ++ic) {
              for (int kh = 0; kh < kernel_h; ++kh) {
                for (int kw = 0; kw < kernel_w; ++kw) {
                  int iw = ow * stride_w - padding_w + kw * (dilation_w);
                  int ih = oh * stride_h - padding_h + kh * (dilation_h);
                  if (iw < 0 || iw >= win) continue;
                  if (ih < 0 || ih >= hin) continue;

                  int iidx = n * chin * hin * win + g * in_c_group * hin * win +
                             ic * hin * win + ih * win + iw;
                  int widx =
                      g * out_c_group * in_c_group * kernel_h * kernel_w +
                      oc * in_c_group * kernel_h * kernel_w +
                      ic * kernel_h * kernel_w + kh * kernel_w + kw;

                  output_data[out_idx] +=
                      (dtype)input_data[iidx] * (dtype)filter_data[widx];
                }
              }
            }
            if (flag_relu) {
              output_data[out_idx] =
                  output_data[out_idx] > 0.f ? output_data[out_idx] : 0.f;
            }
          }
        }
      }
    }
  }
}

T
tensor-tang 已提交
112
TEST(conv_arm, retrive_op) {
113 114
  auto conv = KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>(
      "conv2d");
T
tensor-tang 已提交
115 116 117 118 119 120 121 122 123 124
  ASSERT_FALSE(conv.empty());
  ASSERT_TRUE(conv.front());
}

TEST(conv_arm, init) {
  ConvCompute conv;
  ASSERT_EQ(conv.precision(), PRECISION(kFloat));
  ASSERT_EQ(conv.target(), TARGET(kARM));
}

T
tensor-tang 已提交
125 126
TEST(conv_arm, compute) {
  DeviceInfo::Init();
T
tensor-tang 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140
#if 1
  for (auto n : {2}) {
    for (auto ic : {6}) {
      for (auto oc : {6}) {
        for (auto ih : {9}) {
          for (auto iw : {9}) {
            for (auto flag_bias : {false, true}) {
              for (auto flag_relu : {false, true}) {
                for (auto depthwise : {false, true}) {
                  for (auto dilation : {1}) {
                    for (auto stride : {1, 2}) {
                      for (auto padding : {0, 1, 2}) {
                        for (auto ks : {1, 3, 5}) {
#else
T
tensor-tang 已提交
141
  for (auto n : {1, 2}) {
142 143 144 145 146 147
    for (auto ic : {6, 32 /*, 128*/}) {
      for (auto oc : {6, 32 /*, 128*/}) {
        for (auto ih : {9, 18 /*, 56 , 112, 224, 512*/}) {
          for (auto iw : {9, 18 /*, 56, 112, 224, 512*/}) {
            for (auto flag_bias : {false, true}) {
              for (auto flag_relu : {false, true}) {
T
tensor-tang 已提交
148
                for (auto depthwise : {false, true}) {
149
                  for (auto dilation : {1, 2}) {
T
tensor-tang 已提交
150
                    for (auto stride : {1, 2}) {
151 152
                      for (auto padding : {0, 1, 2}) {
                        for (auto ks : {1, 3, 5}) {
T
tensor-tang 已提交
153
#endif
T
tensor-tang 已提交
154
                          int group = 1;
155 156
                          if (depthwise) {  // depthwise convolution ?
                            group = oc = ic;
T
tensor-tang 已提交
157 158
                          }
                          // get input, filter and output shape
159 160 161
                          std::vector<int64_t> input_shape = {n, ic, ih, iw};
                          std::vector<int64_t> filter_shape = {oc, ic / group,
                                                               ks, ks};
162 163 164 165
                          const int dks = dilation * (ks - 1) + 1;
                          int oh = (ih + 2 * padding - dks) / stride + 1;
                          int ow = (iw + 2 * padding - dks) / stride + 1;
                          std::vector<int64_t> output_shape({n, oc, oh, ow});
T
tensor-tang 已提交
166
                          // resize input, filter and output
167 168 169 170 171
                          Tensor input;
                          Tensor filter;
                          Tensor bias;
                          Tensor output;
                          Tensor output_ref;
172 173 174 175
                          input.Resize(input_shape);
                          filter.Resize(filter_shape);
                          output.Resize(output_shape);
                          output_ref.Resize(output_shape);
T
Tensor Tang 已提交
176 177 178 179 180 181
                          VLOG(3) << "input: " << input.dims();
                          VLOG(3) << "filter: " << filter.dims()
                                  << " padding:" << padding
                                  << " stride:" << stride
                                  << " dilation:" << dilation;
                          VLOG(3) << "output: " << output.dims();
T
tensor-tang 已提交
182 183 184 185 186 187 188
                          auto* input_data = input.mutable_data<float>();
                          auto* filter_data = filter.mutable_data<float>();
                          auto* output_data = output.mutable_data<float>();
                          for (int i = 0; i < input.dims().production(); i++) {
                            input_data[i] = static_cast<float>(i % 128);
                          }
                          for (int i = 0; i < filter.dims().production(); i++) {
189 190 191
                            filter_data[i] =
                                i * 0.001f /
                                static_cast<float>(filter.dims().production());
T
tensor-tang 已提交
192
                          }
193 194 195 196 197 198
                          // prepare kernel params and run
                          ConvCompute conv;
                          std::unique_ptr<KernelContext> ctx(new KernelContext);
                          ctx->As<ARMContext>();
                          conv.SetContext(std::move(ctx));
                          operators::ConvParam param;
T
tensor-tang 已提交
199 200 201 202
                          param.x = &input;
                          param.filter = &filter;
                          param.output = &output;
                          param.bias = nullptr;
203 204 205 206 207 208 209 210
                          if (flag_bias) {
                            bias.Resize({oc});
                            auto* bias_data = bias.mutable_data<float>();
                            for (int i = 0; i < bias.dims().production(); i++) {
                              bias_data[i] = static_cast<float>(i);
                            }
                            param.bias = &bias;
                          }
T
tensor-tang 已提交
211 212 213 214 215 216 217
                          // TODO(hong19860320) param.relu = flag_relu;
                          param.paddings = std::vector<int>({padding, padding});
                          param.strides = std::vector<int>({stride, stride});
                          param.dilations =
                              std::vector<int>({dilation, dilation});
                          param.groups = group;
                          conv.SetParam(param);
218 219
                          conv.Launch();
                          // invoking ref implementation and compare results
T
tensor-tang 已提交
220 221
                          param.output = &output_ref;
                          conv_compute_ref<float>(param);
222 223
                          auto* output_ref_data =
                              output_ref.mutable_data<float>();
T
tensor-tang 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
                          for (int i = 0; i < output.dims().production(); i++) {
                            EXPECT_NEAR(output_data[i], output_ref_data[i],
                                        1e-3);
                          }
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
T
tensor-tang 已提交
240 241 242 243 244 245 246
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

T
tensor-tang 已提交
247 248
USE_LITE_KERNEL(conv2d, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(depthwise_conv2d, kARM, kFloat, kNCHW, def);