Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
299be048
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
299be048
编写于
6月 13, 2019
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix mul kernel test
上级
24e4be6a
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
104 addition
and
89 deletion
+104
-89
paddle/fluid/lite/kernels/arm/conv_compute_test.cc
paddle/fluid/lite/kernels/arm/conv_compute_test.cc
+15
-0
paddle/fluid/lite/kernels/arm/mul_compute_test.cc
paddle/fluid/lite/kernels/arm/mul_compute_test.cc
+89
-89
未找到文件。
paddle/fluid/lite/kernels/arm/conv_compute_test.cc
浏览文件 @
299be048
...
...
@@ -124,6 +124,20 @@ TEST(conv_arm, init) {
TEST
(
conv_arm
,
compute
)
{
DeviceInfo
::
Init
();
#if 1
for
(
auto
n
:
{
2
})
{
for
(
auto
ic
:
{
6
})
{
for
(
auto
oc
:
{
6
})
{
for
(
auto
ih
:
{
9
})
{
for
(
auto
iw
:
{
9
})
{
for
(
auto
flag_bias
:
{
false
,
true
})
{
for
(
auto
flag_relu
:
{
false
,
true
})
{
for
(
auto
depthwise
:
{
false
,
true
})
{
for
(
auto
dilation
:
{
1
})
{
for
(
auto
stride
:
{
1
,
2
})
{
for
(
auto
padding
:
{
0
,
1
,
2
})
{
for
(
auto
ks
:
{
1
,
3
,
5
})
{
#else
for
(
auto
n
:
{
1
,
2
})
{
for
(
auto
ic
:
{
6
,
32
/*, 128*/
})
{
for
(
auto
oc
:
{
6
,
32
/*, 128*/
})
{
...
...
@@ -136,6 +150,7 @@ TEST(conv_arm, compute) {
for
(
auto
stride
:
{
1
,
2
})
{
for
(
auto
padding
:
{
0
,
1
,
2
})
{
for
(
auto
ks
:
{
1
,
3
,
5
})
{
#endif
int
group
=
1
;
if
(
depthwise
)
{
// depthwise convolution ?
group
=
oc
=
ic
;
...
...
paddle/fluid/lite/kernels/arm/mul_compute_test.cc
浏览文件 @
299be048
...
...
@@ -14,7 +14,10 @@
#include "paddle/fluid/lite/kernels/arm/mul_compute.h"
#include <gtest/gtest.h>
#include <algorithm>
#include <iostream>
#include <memory>
#include <random>
#include <utility>
#include <vector>
#include "paddle/fluid/lite/arm/math/funcs.h"
...
...
@@ -25,6 +28,17 @@ namespace lite {
namespace
kernels
{
namespace
arm
{
template
<
typename
T
>
void
FillData
(
T
*
a
,
const
int
n
,
const
T
lower
=
static_cast
<
T
>
(
-
2.
f
),
const
T
upper
=
static_cast
<
T
>
(
2.
f
))
{
static
unsigned
int
seed
=
100
;
std
::
mt19937
rng
(
seed
++
);
std
::
uniform_real_distribution
<
double
>
uniform_dist
(
0
,
1
);
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
a
[
i
]
=
static_cast
<
T
>
(
uniform_dist
(
rng
)
*
(
upper
-
lower
)
+
lower
);
}
}
TEST
(
mul_arm
,
retrive_op
)
{
auto
mul
=
KernelRegistry
::
Global
().
Create
<
TARGET
(
kARM
),
PRECISION
(
kFloat
)
>
(
"mul"
);
...
...
@@ -33,114 +47,100 @@ TEST(mul_arm, retrive_op) {
}
TEST
(
mul_arm
,
init
)
{
Fc
Compute
mul
;
Mul
Compute
mul
;
ASSERT_EQ
(
mul
.
precision
(),
PRECISION
(
kFloat
));
ASSERT_EQ
(
mul
.
target
(),
TARGET
(
kARM
));
}
TEST
(
mul_arm
,
compare_test
)
{
lite
::
Tensor
x
,
w
,
b
,
out
,
ref
;
constexpr
int
batch_size
=
2
;
x
.
Resize
({
batch_size
,
3
});
w
.
Resize
({
3
,
4
});
b
.
Resize
({
1
,
4
});
out
.
Resize
({
batch_size
,
4
});
ref
.
Resize
({
batch_size
,
4
});
auto
x_data
=
x
.
mutable_data
<
float
>
();
auto
w_data
=
w
.
mutable_data
<
float
>
();
auto
b_data
=
b
.
mutable_data
<
float
>
();
auto
out_data
=
out
.
mutable_data
<
float
>
();
auto
ref_data
=
ref
.
mutable_data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
x
.
dims
().
product
();
i
++
)
{
x_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
for
(
int64_t
i
=
0
;
i
<
w
.
dims
().
product
();
i
++
)
{
w_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
for
(
int64_t
i
=
0
;
i
<
b
.
dims
().
product
();
i
++
)
{
b_data
[
i
]
=
static_cast
<
float
>
(
i
);
using
T
=
float
;
for
(
int
m
:
{
1
,
2
,
3
,
4
})
{
for
(
int
n
:
{
1
,
2
,
3
,
4
})
{
for
(
int
k
:
{
1
,
2
,
3
,
4
})
{
lite
::
Tensor
x
,
y
,
out
,
ref
;
x
.
Resize
({
m
,
k
});
y
.
Resize
({
k
,
n
});
out
.
Resize
({
m
,
n
});
ref
.
Resize
({
m
,
n
});
auto
*
x_data
=
x
.
mutable_data
<
T
>
();
auto
*
y_data
=
y
.
mutable_data
<
T
>
();
auto
*
out_data
=
out
.
mutable_data
<
T
>
();
auto
*
ref_data
=
ref
.
mutable_data
<
T
>
();
FillData
<
T
>
(
x_data
,
x
.
dims
().
production
());
FillData
<
T
>
(
y_data
,
y
.
dims
().
production
());
FillData
<
T
>
(
out_data
,
out
.
dims
().
production
());
FillData
<
T
>
(
ref_data
,
out
.
dims
().
production
());
MulCompute
mul
;
operators
::
MulParam
param
;
param
.
x
=
&
x
;
param
.
y
=
&
y
;
param
.
output
=
&
out
;
DeviceInfo
::
Init
();
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
ctx
->
As
<
ARMContext
>
();
mul
.
SetParam
(
param
);
mul
.
SetContext
(
std
::
move
(
ctx
));
mul
.
PrepareForRun
();
mul
.
Run
();
lite
::
arm
::
math
::
mul_compute_eigen
(
x_data
,
m
,
k
,
y_data
,
k
,
n
,
ref_data
);
for
(
int
i
=
0
;
i
<
out
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
out_data
[
i
],
ref_data
[
i
],
1e-3
);
}
}
}
}
}
TEST
(
mul_arm
,
num_col_dims
)
{
using
T
=
float
;
lite
::
arm
::
math
::
fc_compute_eigen
(
x_data
,
batch_size
,
3
,
//
w_data
,
3
,
4
,
//
b_data
,
ref_data
);
lite
::
Tensor
x
,
y
,
out
,
ref
;
x
.
Resize
({
2
,
3
,
4
});
y
.
Resize
({
3
,
4
,
5
});
out
.
Resize
({
2
,
5
});
ref
.
Resize
({
2
,
5
});
// mul compute kernel
FcCompute
mul
;
operators
::
FcParam
param
;
auto
*
x_data
=
x
.
mutable_data
<
T
>
();
auto
*
y_data
=
y
.
mutable_data
<
T
>
();
auto
*
out_data
=
out
.
mutable_data
<
T
>
();
auto
*
ref_data
=
ref
.
mutable_data
<
T
>
();
param
.
in_num_col_dims
=
1
;
param
.
input
=
&
x
;
param
.
w
=
&
w
;
param
.
bias
=
&
b
;
FillData
<
T
>
(
x_data
,
x
.
dims
().
production
());
FillData
<
T
>
(
y_data
,
y
.
dims
().
production
());
FillData
<
T
>
(
out_data
,
out
.
dims
().
production
());
FillData
<
T
>
(
ref_data
,
out
.
dims
().
production
());
MulCompute
mul
;
operators
::
MulParam
param
;
param
.
x
=
&
x
;
param
.
y
=
&
y
;
param
.
output
=
&
out
;
param
.
in_mat_dims
=
x
.
dims
();
param
.
x_num_col_dims
=
1
;
param
.
y_num_col_dims
=
2
;
DeviceInfo
::
Init
();
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
ctx
->
As
<
ARMContext
>
();
mul
.
SetParam
(
param
);
mul
.
SetContext
(
std
::
move
(
ctx
));
mul
.
Run
();
mul
.
PrepareFor
Run
();
VLOG
(
3
)
<<
"output vs ref"
;
for
(
int
i
=
0
;
i
<
out
.
dims
().
product
();
i
++
)
{
VLOG
(
3
)
<<
out_data
[
i
]
<<
" vs "
<<
ref_data
[
i
];
}
for
(
int
i
=
0
;
i
<
out
.
dims
().
product
();
++
i
)
{
EXPECT_NEAR
(
out_data
[
i
],
ref_data
[
i
],
1e-5
);
}
}
mul
.
Run
();
TEST
(
mul_arm
,
num_col_dims
)
{
FcCompute
mul
;
operators
::
FcParam
param
;
lite
::
Tensor
x
;
lite
::
Tensor
w
;
lite
::
Tensor
bias
;
lite
::
Tensor
output
;
x
.
Resize
({
1
,
2
,
3
});
w
.
Resize
({
3
,
4
});
bias
.
Resize
({
1
,
4
});
output
.
Resize
({
2
,
4
});
auto
*
x_data
=
x
.
mutable_data
<
float
>
();
auto
*
w_data
=
w
.
mutable_data
<
float
>
();
auto
*
bias_data
=
bias
.
mutable_data
<
float
>
();
auto
*
output_data
=
output
.
mutable_data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
x
.
dims
().
product
();
i
++
)
{
x_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
for
(
int64_t
i
=
0
;
i
<
w
.
dims
().
product
();
i
++
)
{
w_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
for
(
int64_t
i
=
0
;
i
<
bias
.
dims
().
product
();
i
++
)
{
bias_data
[
i
]
=
static_cast
<
float
>
(
i
);
lite
::
arm
::
math
::
mul_compute_eigen
(
x_data
,
2
,
12
,
y_data
,
12
,
5
,
ref_data
);
for
(
int
i
=
0
;
i
<
out
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
out_data
[
i
],
ref_data
[
i
],
1e-3
);
}
for
(
int64_t
i
=
0
;
i
<
output
.
dims
().
product
();
i
++
)
{
output_data
[
i
]
=
static_cast
<
float
>
(
i
);
}
param
.
in_num_col_dims
=
2
;
param
.
input
=
&
x
;
param
.
w
=
&
w
;
param
.
bias
=
&
bias
;
param
.
output
=
&
output
;
param
.
in_mat_dims
=
x
.
dims
();
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
ctx
->
As
<
ARMContext
>
();
DeviceInfo
::
Init
();
mul
.
SetParam
(
param
);
mul
.
SetContext
(
std
::
move
(
ctx
));
mul
.
Run
();
}
}
// namespace arm
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录