layer.cc 10.8 KB
Newer Older
J
Jiabin Yang 已提交
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
16
#include <algorithm>
J
Jiabin Yang 已提交
17
#include <queue>
18
#include <utility>
19
#include "paddle/fluid/framework/framework.pb.h"
20
#include "paddle/fluid/framework/op_registry.h"
J
Jiabin Yang 已提交
21 22 23
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/imperative/prepared_operator.h"
#include "paddle/fluid/operators/math/math_function.h"
M
minqiyang 已提交
24
#include "paddle/fluid/platform/device_context.h"
J
Jiabin Yang 已提交
25
#include "paddle/fluid/platform/enforce.h"
C
chengduo 已提交
26
#include "paddle/fluid/platform/profiler.h"
27 28 29 30

namespace paddle {
namespace imperative {

J
Jiabin Yang 已提交
31
using framework::Variable;
Z
Zeng Jinle 已提交
32 33 34 35 36 37 38 39
void ThreadSafeNameSet::Insert(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  set_.insert(name);
}

void ThreadSafeNameSet::Remove(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  auto iter = set_.find(name);
J
Jiabin Yang 已提交
40
  PADDLE_ENFORCE_EQ(iter != set_.end(), true, "%s does not exist", name);
Z
Zeng Jinle 已提交
41 42 43 44 45 46 47 48 49 50 51 52
  set_.erase(iter);
}

std::vector<std::string> ThreadSafeNameSet::Names() const {
  std::lock_guard<std::mutex> guard(mtx_);
  return std::vector<std::string>(set_.begin(), set_.end());
}

ThreadSafeNameSet VarBase::name_set_;

std::vector<std::string> VarBase::AliveVarNames() { return name_set_.Names(); }

J
Jiabin Yang 已提交
53 54 55 56
static framework::VariableNameMap CreateVarNameMap(
    const framework::OpInfo& op_info, const std::string& op_type,
    const NameVarBaseMap& varbase_map, bool is_input) {
  if (op_info.proto_ == nullptr) {
H
hong 已提交
57 58 59 60 61 62 63 64 65 66 67 68
    framework::VariableNameMap result;

    for (auto& it : varbase_map) {
      auto& var_vector = it.second;
      std::vector<std::string> args;
      args.reserve(var_vector.size());
      for (auto& var_base : var_vector) {
        args.emplace_back(var_base->Name());
      }
      result[it.first] = std::move(args);
    }
    return result;
M
minqiyang 已提交
69 70
  }

J
Jiabin Yang 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  framework::VariableNameMap result;

  for (auto& var :
       is_input ? op_info.Proto().inputs() : op_info.Proto().outputs()) {
    auto it = varbase_map.find(var.name());
    if (it == varbase_map.end()) {
      PADDLE_ENFORCE_EQ(
          var.dispensable(), true,
          "Var: %s not dispensable and there are no such var in inputs",
          var.name());
      result[var.name()] = {};
    } else {
      auto& var_vector = it->second;
      std::vector<std::string> args;
      args.reserve(var_vector.size());
      for (auto& var_base : var_vector) {
        args.emplace_back(var_base->Name());
      }
      result[var.name()] = std::move(args);
    }
M
minqiyang 已提交
91
  }
J
Jiabin Yang 已提交
92 93
  return result;
}
M
minqiyang 已提交
94

J
Jiabin Yang 已提交
95 96 97 98 99 100 101 102 103
static framework::RuntimeContext PrepareRuntimeContext(
    const NameVarBaseMap& ins, const NameVarBaseMap& outs) {
  framework::VariableValueMap inputs, outputs;
  for (auto& in_pair : ins) {
    auto& in_ctx = inputs[in_pair.first];
    in_ctx.reserve(in_pair.second.size());
    for (auto& in_var : in_pair.second) {
      in_ctx.emplace_back(in_var->MutableVar());
    }
M
minqiyang 已提交
104 105
  }

J
Jiabin Yang 已提交
106 107 108 109 110
  for (auto& out_pair : outs) {
    auto& out_ctx = outputs[out_pair.first];
    out_ctx.reserve(out_pair.second.size());
    for (auto& out_var : out_pair.second) {
      out_ctx.emplace_back(out_var->MutableVar());
111
    }
J
Jiabin Yang 已提交
112 113 114 115 116 117 118 119 120
  }
  return framework::RuntimeContext(std::move(inputs), std::move(outputs));
}

static std::string DebugString(
    const std::string& name,
    const std::vector<std::shared_ptr<VarBase>>& vars) {
  std::stringstream ss;
  ss << name << "{";
M
minqiyang 已提交
121

J
Jiabin Yang 已提交
122 123
  for (size_t i = 0; i < vars.size(); ++i) {
    if (i > 0) ss << ", ";
M
minqiyang 已提交
124

J
Jiabin Yang 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    if (vars[i] == nullptr) {
      ss << "NULL";
      continue;
    }
    ss << vars[i]->Name() << "[";
    auto& var = vars[i]->Var();
    if (!var.IsInitialized()) {
      ss << "NOT_INITED_VAR";
    } else if (var.IsType<framework::LoDTensor>()) {
      auto& tensor = var.Get<framework::LoDTensor>();
      ss << "LoDTensor<";
      if (tensor.IsInitialized()) {
        ss << framework::DataTypeToString(tensor.type()) << ", ";
        ss << tensor.place() << ", ";
        ss << "(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    } else if (var.IsType<framework::SelectedRows>()) {
      ss << "SelectedRows<";
      auto& selected_rows = var.Get<framework::SelectedRows>();
      auto& tensor = selected_rows.value();
      auto& rows = selected_rows.rows();
      if (tensor.IsInitialized()) {
        ss << framework::DataTypeToString(tensor.type()) << ", ";
        ss << tensor.place() << ", ";
        ss << "height(" << selected_rows.height() << "), rows(";
        std::for_each(rows.cbegin(), rows.cend(),
                      [&ss](const int64_t r) { ss << r << " "; });
        ss << "), dims(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
J
Jiabin Yang 已提交
160 161 162 163
    } else {
      ss << "UNRESOLVED_TYPE";
    }
    ss << "]";
164
  }
165

J
Jiabin Yang 已提交
166 167
  ss << "}";
  return ss.str();
168 169
}

J
Jiabin Yang 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182
std::string LayerDebugString(const std::string& op_type,
                             const NameVarBaseMap& ins,
                             const NameVarBaseMap& outs) {
  std::stringstream ss;
  ss << "Op(" << op_type << "): ";

  ss << "Inputs: ";

  size_t i = 0;
  for (auto& pair : ins) {
    if (i > 0) ss << ", ";
    ss << DebugString(pair.first, pair.second);
    ++i;
183 184
  }

J
Jiabin Yang 已提交
185 186 187 188 189 190 191 192 193
  ss << ",   Outputs: ";
  i = 0;
  for (auto& pair : outs) {
    if (i > 0) ss << ", ";
    ss << DebugString(pair.first, pair.second);
    ++i;
  }
  return ss.str();
}
194

J
Jiabin Yang 已提交
195 196 197 198 199 200
void VarBase::AddGradOps(const std::weak_ptr<OpBase>& op) {
  if (op.lock() == nullptr) {
    return;
  }
  for (const auto& cur_op : grad_ops_) {
    if (cur_op.lock() == op.lock()) {
201 202
      return;
    }
203
  }
J
Jiabin Yang 已提交
204 205
  grad_ops_.emplace_back(op);
}
206

J
Jiabin Yang 已提交
207 208
void VarBase::ClearGradient() {
  if (grad_var_) {
209 210 211 212 213 214 215 216 217 218 219 220 221
    if (grad_var_->var_.IsType<framework::SelectedRows>()) {
      auto* grad_t = grad_var_->var_.GetMutable<framework::SelectedRows>();
      if (grad_t->mutable_value()->IsInitialized()) {
        grad_t->mutable_rows()->clear();
        grad_t->mutable_value()->clear();
      }
    } else {
      auto* grad_t = grad_var_->var_.GetMutable<framework::LoDTensor>();
      if (grad_t->IsInitialized()) {
        auto* dev_ctx =
            platform::DeviceContextPool::Instance().Get(grad_t->place());
        operators::math::set_constant(*dev_ctx, grad_t, 0.0);
      }
222 223
    }
  }
J
Jiabin Yang 已提交
224
}
225

J
Jiabin Yang 已提交
226
std::shared_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
M
minqiyang 已提交
227
                                             const bool blocking) const {
228 229 230 231 232 233 234 235 236 237 238
  PADDLE_ENFORCE_EQ(
      var_.IsInitialized() && (var_.IsType<framework::LoDTensor>() ||
                               var_.IsType<framework::SelectedRows>()),
      true, platform::errors::InvalidArgument(
                "Variable is not initialized or Variable's type is not "
                "LoDTensor or SelectedRows when getting numpy tensor"));
  if (var_.IsType<framework::LoDTensor>()) {
    auto& src_tensor = var_.Get<framework::LoDTensor>();

    // TODO(Jiabin): change this after move unique_name generator to CXX
    auto new_var = std::make_shared<VarBase>(
239
        true, Name() + std::to_string(copied_counter_++));
240 241 242

    auto* dst_tensor = new_var->var_.GetMutable<framework::LoDTensor>();
    dst_tensor->set_lod(src_tensor.lod());
243 244 245
    new_var->SetPersistable(Persistable());
    new_var->SetDataType(DataType());
    new_var->SetType(Type());
246 247 248 249 250 251 252
    framework::TensorCopy(src_tensor, dst_place, dst_tensor);
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_tensor.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
253
    }
P
Paddle CI 已提交
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    if (platform::is_gpu_place(dst_place)) {
      VLOG(3) << "copy tensor " << Name() << " from gpu";
    }
    return new_var;
  } else {
    auto& src_selected_rows = var_.Get<framework::SelectedRows>();
    auto new_var = std::make_shared<VarBase>(
        false, "Itmp" + std::to_string(copied_counter_++));
    new_var->SetType(framework::proto::VarType::SELECTED_ROWS);
    auto* dst_selected_rows =
        new_var->var_.GetMutable<framework::SelectedRows>();

    framework::TensorCopy(src_selected_rows.value(), dst_place,
                          dst_selected_rows->mutable_value());
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_selected_rows.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
    }
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());
    if (platform::is_gpu_place(dst_place)) {
      VLOG(3) << "copy selected rows " << Name() << " from gpu";
    }
    return new_var;
  }
M
minqiyang 已提交
283
}
J
Jiabin Yang 已提交
284 285
// create OpBase from optype
OpBase::OpBase(size_t id, const std::string& type, const NameVarBaseMap& ins,
H
hong 已提交
286
               const NameVarBaseMap& outs, const framework::AttributeMap& attrs,
J
Jiabin Yang 已提交
287
               const platform::Place& place)
H
hong 已提交
288
    : id_(id), place_(place), attrs_(attrs) {
J
Jiabin Yang 已提交
289 290 291 292
  const auto& info = framework::OpInfoMap::Instance().Get(type);

  // Step 1: Run forward
  if (info.Checker() != nullptr) {
H
hong 已提交
293
    info.Checker()->Check(&attrs_);
J
Jiabin Yang 已提交
294
  }
M
minqiyang 已提交
295

H
hong 已提交
296
  op_ = framework::OpRegistry::CreateOp(type, {}, {}, {}, false);
297

H
hong 已提交
298
  VLOG(3) << "Construct Op: " << type << std::endl;
J
Jiabin Yang 已提交
299
}
300

H
hong 已提交
301 302 303 304 305
void OpBase::CreateOperatorBase() {
  const auto& info = framework::OpInfoMap::Instance().Get(type_);
  if (info.Checker() != nullptr) {
    info.Checker()->Check(&attrs_);
  }
H
hong 已提交
306
  op_ = framework::OpRegistry::CreateOp(type_, {}, {}, {}, false);
H
hong 已提交
307 308
}

J
Jiabin Yang 已提交
309 310 311 312 313
void OpBase::Run(const NameVarBaseMap& ins, const NameVarBaseMap& outs) {
  auto* op_kernel = dynamic_cast<framework::OperatorWithKernel*>(op_.get());
  PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");
  auto& info = op_->Info();
  if (info.infer_var_type_) {
H
hong 已提交
314
    RuntimeInferVarTypeContext infer_var_type_ctx(ins, &outs, attrs_);
J
Jiabin Yang 已提交
315
    info.infer_var_type_(&infer_var_type_ctx);
X
Xin Pan 已提交
316
  }
J
Jiabin Yang 已提交
317 318 319 320
  // Initialize output var type
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
      InitializeVariable(var->MutableVar(), var->Type());
321 322
    }
  }
X
Xin Pan 已提交
323

J
Jiabin Yang 已提交
324 325
  VLOG(3) << "Running Op " << Type();
  VLOG(5) << LayerDebugString(Type(), ins, outs);
H
hong 已提交
326 327
  auto prepared_op =
      PreparedOp::Prepare(ins, outs, *op_kernel, place(), &attrs_);
328

H
hong 已提交
329
  prepared_op.Run(&ins, &outs, &attrs_);
330

J
Jiabin Yang 已提交
331
  VLOG(4) << LayerDebugString(Type(), ins, outs);
332 333
}

J
Jiabin Yang 已提交
334 335 336 337
void OpBase::ClearBackwardTrace() {
  grad_pending_ops_.clear();
  ins_.clear();
  outs_.clear();
338 339 340 341
}

}  // namespace imperative
}  // namespace paddle