auto_mixed_precision_pass.cc 29.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/auto_mixed_precision_pass.h"
16 17 18

#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/operator.h"
19 20 21 22 23 24
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/errors.h"
25 26 27 28 29 30 31

namespace paddle {
namespace framework {
namespace ir {

namespace {

32
using VarType = AutoMixedPrecisionPass::VarType;
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

bool PhiKernelSupportPrecision(
    const std::string& op_type,
    phi::Backend backend,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  const auto& kernels = phi::KernelFactory::Instance().kernels();
  if (kernels.count(op_type) == 0) {
    return false;
  }
  phi::KernelKey kernel_key(backend, layout, data_type);
  return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key);
}

bool GpuKernelSupportPrecision(
    const std::string& op_type,
    phi::DataType precision,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  auto phi_op_type = phi::TransToPhiKernelName(op_type);
  bool support = PhiKernelSupportPrecision(
      phi_op_type, phi::Backend::GPU, precision, layout);
  support |= PhiKernelSupportPrecision(
      phi_op_type, phi::Backend::GPUDNN, precision, layout);

  if (!support) {
    const auto& all_kernels = framework::OperatorWithKernel::AllOpKernels();
    auto it = all_kernels.find(op_type);
    if (it != all_kernels.end()) {
      for (const auto& kern_pair : it->second) {
        if (platform::is_gpu_place(kern_pair.first.place_) &&
            kern_pair.first.data_type_ ==
                framework::TransToProtoVarType(precision)) {
          support = true;
          break;
        }
      }
    }
  }
  return support;
}

74 75 76 77 78 79 80
inline bool VarNodeHasDtype(Node* var_node) {
  auto type = var_node->Var()->GetType();
  return (type == VarType::SELECTED_ROWS) || (type == VarType::LOD_TENSOR) ||
         (type == VarType::LOD_TENSOR_ARRAY) || (type == VarType::STRINGS) ||
         (type == VarType::VOCAB);
}

81
inline bool IsFP32AndFP64(VarType::Type type) {
82 83 84
  return (type == VarType::FP64) || (type == VarType::FP32);
}

85
inline bool IsFP16AndBFP16(VarType::Type type) {
86 87 88 89 90
  return (type == VarType::FP16) || (type == VarType::BF16);
}

};  // namespace

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
void DoInsertCastOp(Graph* graph,
                    Node* var_node,
                    Node* op_node,
                    VarType::Type from_type,
                    VarType::Type to_type,
                    framework::BlockDesc* block_desc,
                    int* suffix,
                    std::unordered_map<Node*, Node*>* cache) {
  if (from_type == to_type) return;

  auto update_cast_desc = [&](framework::OpDesc& desc,
                              const std::string& x_name,
                              const std::string& out_name,
                              const int in_dtype,
                              const int out_dtype) {
    desc.SetType("cast");
    desc.SetInput("X", {x_name});
    desc.SetOutput("Out", {out_name});
    desc.SetAttr("in_dtype", in_dtype);
    desc.SetAttr("out_dtype", out_dtype);
    desc.SetAttr("use_mkldnn", false);
    desc.SetAttr("with_quant_attr", false);
    desc.Flush();
  };

  if (cache->count(var_node) == 0) {
    // insert cast op between var_node and op_node
    std::string cast_input_name = var_node->Var()->Name();
    std::string cast_output_name =
        var_node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++);
    framework::OpDesc cast_op_desc(block_desc);
    update_cast_desc(cast_op_desc,
                     cast_input_name,
                     cast_output_name,
                     static_cast<int>(from_type),
                     static_cast<int>(to_type));
    auto* cast_op_node = graph->CreateOpNode(&cast_op_desc);
    auto* cast_output_vardesc = block_desc->Var(cast_output_name);
    cast_output_vardesc->SetPersistable(false);
    cast_output_vardesc->SetDataType(to_type);
    cast_output_vardesc->SetShape(var_node->Var()->GetShape());
    auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc);
    IR_NODE_LINK_TO(cast_op_node, cast_output_node);
    (*cache)[var_node] = cast_output_node;
  }
  op_node->Op()->Rename(var_node->Name(), cache->at(var_node)->Name());
  IR_NODE_LINK_TO(var_node, cache->at(var_node)->inputs[0]);
  IR_NODE_LINK_TO(cache->at(var_node), op_node);

  IR_NODE_UNLINK(var_node, op_node);
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156
bool OpSupportPrecision(const std::string& op_type,
                        phi::Backend backend,
                        phi::DataType precision,
                        const std::unordered_set<std::string>& black_list) {
  bool support = false;
  if (black_list.count(op_type) == 0) {
    if (backend == phi::Backend::GPU) {
      support = GpuKernelSupportPrecision(op_type, precision);
    } else {
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Now, only support backend of GPU."));
    }
  }
  return support;
157 158 159 160 161
}

// The set of ops that support fp16 calculation and are considered
// numerically-dangerous, slower and whose effects may also be observed in
// downstream ops.
162
// ref to python/paddle/fluid/contrib/mixed_precision/fp16_lists.py
163
void AutoMixedPrecisionPass::SetDefaultBlacklist() const {
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  black_list_.insert({
      // numerically-dangerous
      "exp",
      "square",
      "log",
      "mean",
      "sum",
      "cos_sim",
      "softmax_with_cross_entropy",
      "sigmoid_cross_entropy_with_logits",
      "c_softmax_with_cross_entropy",
      "cross_entropy",
      "cross_entropy2",
      // slower than fp32
      "conv2d_transpose",
      // default fp32 can avoid return inf when the sum value large than 65504
      "reduce_sum",
  });
}

184 185 186 187 188 189 190 191 192 193
void AutoMixedPrecisionPass::Init(Graph* graph) const {
  bool enable_gpu_mixed = Get<bool>("enable_gpu_mixed");
  if (enable_gpu_mixed) {
    backend_ = phi::Backend::GPU;
  }

  skip_pass_ = !enable_gpu_mixed;

  low_precision_ = static_cast<phi::DataType>(Get<int>("mixed_precision_mode"));

194 195
  black_list_ = Get<std::unordered_set<std::string>>("mixed_black_list");
  SetDefaultBlacklist();
196 197 198 199 200 201 202 203 204
  VLOG(4) << "black_list has ";
  for (const auto& name : black_list_) {
    VLOG(4) << " - " << name;
  }

  keep_io_types_ = true;
  if (Has("keep_io_types")) {
    keep_io_types_ = Get<bool>("keep_io_types");
  }
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

  auto graph_size = graph->SubGraphsSize();
  VLOG(4) << "graph size: " << graph_size;
  subgraphes_.resize(graph_size);
  all_op_nodes_.resize(graph_size);

  for (size_t i = 0; i < graph_size; i++) {
    subgraphes_[i] = graph->GetSubGraph(i);
    all_op_nodes_[i] = TopologySortOperations(*subgraphes_[i]);
    VLOG(4) << "subgraph " << i << " has " << all_op_nodes_[i].size()
            << "op nodes";
    for (auto* var_node : subgraphes_[i]->Nodes()) {
      if (!var_node->IsVar()) continue;

      auto var_name = var_node->Var()->Name();
      if (real_vars_.count(var_name) == 0) {
        real_vars_[var_name] = var_node;
        VLOG(4) << var_name << " is in graph " << i;
      }
    }
  }
}

228 229 230 231 232 233 234 235 236 237
void AutoMixedPrecisionPass::ApplyImpl(Graph* graph) const {
  PADDLE_ENFORCE_NOT_NULL(graph,
                          platform::errors::PreconditionNotMet(
                              "During the auto_mixed_precision_pass, the graph "
                              "should not be nullptr."));
  PADDLE_ENFORCE_EQ(graph->IsMainGraph(),
                    true,
                    platform::errors::PreconditionNotMet(
                        "During the auto_mixed_precision_pass, the graph "
                        "should be main graph."));
238

239
  FusePassBase::Init("auto_mixed_precision", graph);
240 241 242

  Init(graph);
  VLOG(4) << "Init done";
243 244 245 246 247 248

  if (skip_pass_) {
    VLOG(3) << "Skip auto_mixed_precision_pass.";
    return;
  }

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  SetOpUniqueType();
  VLOG(4) << "SetOpUniqueType done";
  GetOpPrecision();
  VLOG(4) << "GetOpPrecision done";
  UpdateOpPrecision();
  VLOG(4) << "UpdateOpPrecision done";
  SetVarPrecision();
  VLOG(4) << "SetVarPrecision done";
  ConvertWeightsData();
  VLOG(4) << "ConvertWeightsData done";
  ProcessOpWithDtypeAttr();
  VLOG(4) << "ProcessOpWithDtypeAttr done";
  InsertCastOp();
  VLOG(4) << "InsertCastOp done";
  RestoreOpOriginType();
  VLOG(4) << "RestoreOpOriginType done";
265 266 267
  LOG(INFO) << "The number of ops run at low precision ["
            << op_run_low_precision_.size() << "/" << op_original_type_.size()
            << "]";
268 269
}

270
void AutoMixedPrecisionPass::SetOpUniqueType() const {
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
  int suffix = 0;
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();

      if (op_type == "feed" || op_type == "fetch") continue;

      std::string unique_type = op_type + "_" + std::to_string(suffix++);
      op_original_type_[unique_type] = op_type;
      op_node->Op()->SetType(unique_type);
      op_node->Op()->Flush();
      VLOG(4) << "change op type: " << op_type << " ---> " << unique_type;
    }
  }
}

287
void AutoMixedPrecisionPass::RestoreOpOriginType() const {
288 289 290 291 292 293 294 295 296 297 298
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
      op_node->Op()->SetType(GetOpOriginalType(op_type));
      op_node->Op()->Flush();
      VLOG(4) << "restore op type: " << op_type << " ---> "
              << op_node->Op()->Type();
    }
  }
}

299
inline std::string AutoMixedPrecisionPass::GetOpOriginalType(
300 301 302 303 304 305 306
    const std::string& op_type) const {
  if (op_original_type_.count(op_type)) {
    return op_original_type_.at(op_type);
  }
  return op_type;
}

307
void AutoMixedPrecisionPass::ProcessOpWithDtypeAttr() const {
308 309 310
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

      if (op_node->Op()->HasAttr("in_dtype")) {
        auto* var_node = op_node->inputs[0];
        auto* real_var_node = real_vars_[var_node->Var()->Name()];
        if (IsFP16AndBFP16(real_var_node->Var()->GetDataType())) {
          op_node->Op()->SetAttr(
              "in_dtype",
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
          op_node->Op()->Flush();
          VLOG(4) << "process op with in_dtype attr: " << op_type << " ( "
                  << static_cast<int>(real_var_node->Var()->GetDataType())
                  << " --->" << static_cast<int>(low_precision_) << " )";
        }
      }

326
      if (op_run_low_precision_.count(op_type) == 0) continue;
327 328 329

      if (op_node->Op()->HasAttr("dtype")) {
        auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
330
        if (IsFP32AndFP64(static_cast<VarType::Type>(dtype))) {
331 332
          op_node->Op()->SetAttr(
              "dtype",
333
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
334 335
          op_node->Op()->Flush();
          VLOG(4) << "process op with dtype attr: " << op_type << " ( " << dtype
336
                  << " --->" << static_cast<int>(low_precision_) << " )";
337
        }
338
      } else if (op_node->Op()->HasAttr("out_dtype")) {
339
        auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
340
        if (IsFP32AndFP64(static_cast<VarType::Type>(out_dtype))) {
341 342
          op_node->Op()->SetAttr(
              "out_dtype",
343
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
344 345
          op_node->Op()->Flush();
          VLOG(4) << "process op with out_dtype attr: " << op_type << " ( "
346
                  << out_dtype << " --->" << static_cast<int>(low_precision_)
347 348 349 350 351 352 353
                  << " )";
        }
      }
    }
  }
}

354
void AutoMixedPrecisionPass::GetOpPrecision() const {
355 356 357
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
358
      bool support_low_precision = true;
359 360
      if (GetOpOriginalType(op_type) == "feed" ||
          GetOpOriginalType(op_type) == "fetch") {
361
        support_low_precision = !keep_io_types_;
362
      } else {
363 364
        support_low_precision = OpSupportPrecision(
            GetOpOriginalType(op_type), backend_, low_precision_, black_list_);
365 366 367 368
      }

      if (op_node->Op()->HasAttr("dtype")) {
        auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
369 370 371
        support_low_precision =
            support_low_precision &&
            IsFP32AndFP64(static_cast<VarType::Type>(dtype));
372 373
      } else if (op_node->Op()->HasAttr("out_dtype")) {
        auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
374 375
        support_low_precision =
            support_low_precision &&
376 377
            IsFP32AndFP64(static_cast<VarType::Type>(out_dtype));
      }
378

379 380 381 382 383 384
      // If scale op's "scale" and "bias" attr value exceed the range of fp16
      // and bf16, it cannot run at low precision.
      if (GetOpOriginalType(op_node->Op()->Type()) == "scale") {
        auto scale = op_node->Op()->GetAttrIfExists<float>("scale");
        auto bias = op_node->Op()->GetAttrIfExists<float>("bias");
        if (low_precision_ == phi::DataType::FLOAT16) {
385 386
          support_low_precision =
              support_low_precision &&
387 388 389
              phi::dtype::isfinite(static_cast<phi::dtype::float16>(scale)) &&
              phi::dtype::isfinite(static_cast<phi::dtype::float16>(bias));
        } else if (low_precision_ == phi::DataType::BFLOAT16) {
390 391
          support_low_precision =
              support_low_precision &&
392 393
              phi::dtype::isfinite(static_cast<phi::dtype::bfloat16>(scale)) &&
              phi::dtype::isfinite(static_cast<phi::dtype::bfloat16>(bias));
394 395 396
        }
      }

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
      // if op's input var and output var is not dense tensor, the op should
      // not run at low precision.
      for (auto* in_var_node : op_node->inputs) {
        CHECK_EQ(in_var_node->IsVar(), true);
        auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
        if (real_in_var_node->Var()->Persistable()) continue;

        support_low_precision =
            support_low_precision &&
            (real_in_var_node->Var()->GetType() == VarType::LOD_TENSOR);
      }
      for (auto* out_var_node : op_node->outputs) {
        CHECK_EQ(out_var_node->IsVar(), true);
        auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
        if (real_out_var_node->Var()->Persistable()) continue;

        support_low_precision =
            support_low_precision &&
            (real_out_var_node->Var()->GetType() == VarType::LOD_TENSOR);
      }

418 419 420
      if (support_low_precision) {
        op_run_low_precision_.insert(op_type);
        VLOG(4) << "support precision: " << op_type << " run at low precision";
421
      } else {
422 423
        VLOG(4) << "support precision: " << op_type
                << " not run at low precision";
424 425 426 427 428
      }
    }
  }
}

429 430
void AutoMixedPrecisionPass::UpdateOpPrecision() const {
  std::unordered_set<std::string> vars_should_not_low_precision;
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

  // var -> the var's all input op
  std::unordered_map<std::string, std::vector<Node*>> var_input_ops;

  auto GetVarInputOps = [&] {
    for (const auto& nodes : all_op_nodes_) {
      for (auto* op_node : nodes) {
        auto op_type = op_node->Op()->Type();

        if (GetOpOriginalType(op_type) == "fetch") continue;
        if (op_node->Op()->HasAttr("sub_block")) continue;

        for (auto* var_node : op_node->outputs) {
          CHECK_EQ(var_node->IsVar(), true);
          if (var_node->Var()->Persistable()) continue;
          if (!VarNodeHasDtype(var_node)) continue;

          var_input_ops[var_node->Var()->Name()].push_back(op_node);
          VLOG(4) << "var input ops: " << var_node->Var()->Name()
                  << " is output of " << op_type;
        }

453 454 455
        // the select_input op's input var should not convert to low precision.
        // when op's output var is select_input op's input var, the op should
        // not run at low precision.
456 457 458 459 460 461
        if (GetOpOriginalType(op_node->Op()->Type()) == "select_input") {
          for (auto* in_var_node : op_node->inputs) {
            CHECK_EQ(in_var_node->IsVar(), true);
            if (in_var_node->Var()->Persistable()) continue;
            if (!VarNodeHasDtype(in_var_node)) continue;

462
            vars_should_not_low_precision.insert(in_var_node->Var()->Name());
463 464
          }
        }
465 466

        // when op_1 only support cpu kernel. if op_2's intput var is op_1's
467
        // output var, then op_2 should not run at low precision.
468 469 470 471 472 473 474 475 476 477 478
        if (GetOpOriginalType(op_type) != "feed" &&
            !GpuKernelSupportPrecision(GetOpOriginalType(op_type),
                                       phi::DataType::FLOAT32)) {
          for (auto* out_var_node : op_node->outputs) {
            CHECK_EQ(out_var_node->IsVar(), true);
            if (out_var_node->Var()->Persistable()) continue;
            if (!VarNodeHasDtype(out_var_node)) continue;

            vars_should_not_low_precision.insert(out_var_node->Var()->Name());
          }
        }
479 480 481 482 483 484 485 486 487 488
      }
    }
  };
  GetVarInputOps();

  bool precision_updated = false;
  do {
    precision_updated = false;
    for (const auto& nodes : all_op_nodes_) {
      for (auto* op_node : nodes) {
489
        if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) continue;
490

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);
          if (!VarNodeHasDtype(in_var_node)) continue;

          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          if (real_in_var_node->Var()->Persistable()) continue;

          if (vars_should_not_low_precision.count(
                  real_in_var_node->Var()->Name())) {
            op_run_low_precision_.erase(op_node->Op()->Type());
            precision_updated = true;
            VLOG(4) << op_node->Op()->Type()
                    << " should not run at low precision.";
            break;
          }
        }

        if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) continue;

510 511 512 513 514 515 516
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);
          if (!VarNodeHasDtype(out_var_node)) continue;

          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          if (real_out_var_node->Var()->Persistable()) continue;

517
          bool not_run_low_precision = false;
518 519
          const auto& input_op_nodes =
              var_input_ops[real_out_var_node->Var()->Name()];
520 521 522
          if (vars_should_not_low_precision.count(
                  real_out_var_node->Var()->Name())) {
            not_run_low_precision = true;
523 524
          } else {
            for (auto* node : input_op_nodes) {
525 526
              if (op_run_low_precision_.count(node->Op()->Type()) == 0) {
                not_run_low_precision = true;
527 528 529 530
                break;
              }
            }
          }
531 532
          if (not_run_low_precision) {
            op_run_low_precision_.erase(op_node->Op()->Type());
533 534
            precision_updated = true;
            VLOG(4) << op_node->Op()->Type()
535
                    << " should not run at low precision.";
536 537 538 539 540 541 542 543 544
            break;
          }
        }
      }
    }
  } while (precision_updated);
}

// special ops, its weights should not be low precision.
545 546
bool AutoMixedPrecisionPass::InputVarsNotConvert(
    Node* op_node, const std::string& var_name) const {
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
  auto* op_desc = op_node->Op();
  if (GetOpOriginalType(op_desc->Type()) == "batch_norm") {
    auto vecs = op_desc->Input("Bias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Mean");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Scale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Variance");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  } else if (GetOpOriginalType(op_desc->Type()) == "fused_multi_transformer") {
    auto vecs = op_desc->Input("LnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("LnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("FFNLnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("FFNLnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  }
  return false;
}

586 587
bool AutoMixedPrecisionPass::OutputVarsNotConvert(
    Node* op_node, const std::string& var_name) const {
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
  auto* op_desc = op_node->Op();
  // batch_norm's input and output (variance and mean) are the same.
  if (GetOpOriginalType(op_desc->Type()) == "batch_norm") {
    auto vecs = op_desc->Output("MeanOut");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("VarianceOut");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedMean");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedVariance");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  }
  return false;
}

611
void AutoMixedPrecisionPass::SetVarPrecision() const {
612 613
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
614 615 616 617 618
      if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) {
        continue;
      }

      if (GetOpOriginalType(op_node->Op()->Type()) != "feed") {
619 620 621 622 623 624
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);

          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          auto in_var_name = real_in_var_node->Var()->Name();

625
          if (!IsFP32AndFP64(real_in_var_node->Var()->GetDataType())) continue;
626 627 628 629 630
          if (!VarNodeHasDtype(real_in_var_node)) continue;
          if (InputVarsNotConvert(op_node, in_var_name)) continue;

          if (real_in_var_node->Var()->Persistable()) {
            real_in_var_node->Var()->SetDataType(
631 632
                framework::TransToProtoVarType(low_precision_));
            vars_convert_to_low_precision_.insert(in_var_name);
633 634
          }
        }
635
      }
636

637
      if (GetOpOriginalType(op_node->Op()->Type()) != "fetch") {
638 639 640 641 642 643
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);

          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          auto out_var_name = real_out_var_node->Var()->Name();

644
          if (!IsFP32AndFP64(real_out_var_node->Var()->GetDataType())) continue;
645 646 647 648
          if (!VarNodeHasDtype(real_out_var_node)) continue;
          if (OutputVarsNotConvert(op_node, out_var_name)) continue;

          real_out_var_node->Var()->SetDataType(
649
              framework::TransToProtoVarType(low_precision_));
650
          if (real_out_var_node->Var()->Persistable()) {
651
            vars_convert_to_low_precision_.insert(out_var_name);
652 653 654 655 656 657 658 659 660 661 662 663 664 665
          }
        }
      }
    }
  }

  // This code used to precess vars with the same name. Vars with the same
  // name should have the same data type.
  for (auto* subgraph : subgraphes_) {
    for (auto* var_node : subgraph->Nodes()) {
      if (!var_node->IsVar() || !var_node->Var()->Persistable()) continue;
      if (!VarNodeHasDtype(var_node)) continue;

      auto var_name = var_node->Var()->Name();
666
      if (vars_convert_to_low_precision_.count(var_name)) {
667
        var_node->Var()->SetDataType(
668
            framework::TransToProtoVarType(low_precision_));
669 670 671 672 673
      }
    }
  }
}

674
void AutoMixedPrecisionPass::ConvertWeightsData() const {
675
  auto* scope = param_scope();
676 677 678 679
  PADDLE_ENFORCE_NOT_NULL(scope,
                          platform::errors::PreconditionNotMet(
                              "During the auto_mixed_precision_pass, the scope "
                              "should not be null."));
680 681 682

  auto var_names = scope->LocalVarNames();
  for (const auto& var_name : var_names) {
683
    if (vars_convert_to_low_precision_.count(var_name)) {
684
      VLOG(4) << var_name << "'s data type was convert to low precision";
685 686

      auto* var = scope->FindLocalVar(var_name);
687 688 689 690
      CHECK_EQ(var->IsType<phi::DenseTensor>(), true);

      auto* origin_tensor = var->GetMutable<phi::DenseTensor>();

691 692 693
      phi::DenseTensor low_precision_tensor;
      low_precision_tensor.Resize(origin_tensor->dims());
      low_precision_tensor.set_type(low_precision_);
694

695 696 697 698
      if (low_precision_ == phi::DataType::FLOAT16) {
        auto* low_precision_data =
            low_precision_tensor.mutable_data<phi::dtype::float16>(
                phi::CPUPlace{});
699 700 701
        for (int64_t i = 0; i < origin_tensor->numel(); i++) {
          if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
            auto* origin_data = origin_tensor->data<double>();
702 703
            low_precision_data[i] =
                static_cast<phi::dtype::float16>(origin_data[i]);
704 705
          } else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
            auto* origin_data = origin_tensor->data<float>();
706 707
            low_precision_data[i] =
                static_cast<phi::dtype::float16>(origin_data[i]);
708 709
          }
        }
710
      } else if (low_precision_ == phi::DataType::BFLOAT16) {
711
        auto* low_precision_data =
712 713
            low_precision_tensor.mutable_data<phi::dtype::bfloat16>(
                phi::CPUPlace{});
714 715 716
        for (int64_t i = 0; i < origin_tensor->numel(); i++) {
          if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
            auto* origin_data = origin_tensor->data<double>();
717 718
            low_precision_data[i] =
                static_cast<phi::dtype::bfloat16>(origin_data[i]);
719 720
          } else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
            auto* origin_data = origin_tensor->data<float>();
721 722
            low_precision_data[i] =
                static_cast<phi::dtype::bfloat16>(origin_data[i]);
723
          }
724 725
        }
      }
726 727
      origin_tensor->clear();
      paddle::framework::TensorCopySync(
728
          low_precision_tensor, phi::CPUPlace{}, origin_tensor);
729 730 731 732
    }
  }
}

733
void AutoMixedPrecisionPass::InsertCastOp() const {
734 735 736 737 738 739 740 741 742 743 744 745 746
  int suffix = 0;
  std::unordered_map<Node*, Node*> cache;

  for (size_t i = 0; i < all_op_nodes_.size(); i++) {
    auto* block_desc = all_op_nodes_[i][0]->Op()->Block();
    CHECK_NOTNULL(block_desc);
    for (auto* op_node : all_op_nodes_[i]) {
      auto op_type = op_node->Op()->Type();

      if (GetOpOriginalType(op_type) == "feed") continue;
      if (op_node->Op()->HasAttr("sub_block")) continue;

      VLOG(4) << "process op: " << op_type
747
              << " run low precision: " << op_run_low_precision_.count(op_type);
748 749 750 751 752 753 754 755 756 757 758 759 760 761

      auto inputs = op_node->inputs;
      for (auto* in_var_node : inputs) {
        if (!in_var_node->IsVar()) continue;
        if (!VarNodeHasDtype(in_var_node)) continue;
        if (in_var_node->Var()->Persistable()) continue;

        auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];

        auto in_var_type = real_in_var_node->Var()->GetDataType();

        VLOG(4) << "process var: " << real_in_var_node->Var()->Name()
                << " with type " << in_var_type;

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
        if (IsFP32AndFP64(in_var_type) &&
            op_run_low_precision_.count(op_type)) {
          auto to_type = framework::TransToProtoVarType(low_precision_);
          auto* prev_op =
              in_var_node->inputs.empty() ? nullptr : in_var_node->inputs[0];
          if (prev_op && GetOpOriginalType(prev_op->Op()->Type()) == "cast") {
            in_var_node->Var()->SetDataType(to_type);
            prev_op->Op()->SetAttr("out_dtype", static_cast<int>(to_type));
            prev_op->Op()->Flush();
          } else {
            DoInsertCastOp(subgraphes_[i],
                           in_var_node,
                           op_node,
                           in_var_type,
                           to_type,
                           block_desc,
                           &suffix,
                           &cache);
          }
        } else if (IsFP16AndBFP16(in_var_type) &&
782
                   op_run_low_precision_.count(op_type) == 0) {
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
          auto to_type = VarType::FP32;
          auto* prev_op =
              in_var_node->inputs.empty() ? nullptr : in_var_node->inputs[0];
          if (prev_op && GetOpOriginalType(prev_op->Op()->Type()) == "cast") {
            in_var_node->Var()->SetDataType(to_type);
            prev_op->Op()->SetAttr("out_dtype", static_cast<int>(to_type));
            prev_op->Op()->Flush();
          } else {
            DoInsertCastOp(subgraphes_[i],
                           in_var_node,
                           op_node,
                           in_var_type,
                           to_type,
                           block_desc,
                           &suffix,
                           &cache);
          }
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
        }
      }

      // Special op.
      // fused_multi_transformer's input(CacheKV) and output(CacheKVOut) vars
      // have same name.
      if (GetOpOriginalType(op_type) == "fused_multi_transformer") {
        auto cache_kv_inputs = op_node->Op()->Input("CacheKV");
        auto cache_kv_outputs = op_node->Op()->Output("CacheKVOut");
        CHECK_EQ(cache_kv_inputs.size(), cache_kv_outputs.size());
        for (size_t i = 0; i < cache_kv_inputs.size(); ++i) {
          op_node->Op()->RenameOutput(cache_kv_outputs[i], cache_kv_inputs[i]);
        }
      }
    }
  }
  VLOG(4) << "insert number of cast op: " << cache.size();
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

823 824
REGISTER_PASS(auto_mixed_precision_pass,
              paddle::framework::ir::AutoMixedPrecisionPass);