auto_mixed_precision_pass.cc 26.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/auto_mixed_precision_pass.h"
16 17 18

#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/operator.h"
19 20 21 22 23 24
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/errors.h"
25 26 27 28 29 30 31

namespace paddle {
namespace framework {
namespace ir {

namespace {

32
using VarType = AutoMixedPrecisionPass::VarType;
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

bool PhiKernelSupportPrecision(
    const std::string& op_type,
    phi::Backend backend,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  const auto& kernels = phi::KernelFactory::Instance().kernels();
  if (kernels.count(op_type) == 0) {
    return false;
  }
  phi::KernelKey kernel_key(backend, layout, data_type);
  return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key);
}

bool GpuKernelSupportPrecision(
    const std::string& op_type,
    phi::DataType precision,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  auto phi_op_type = phi::TransToPhiKernelName(op_type);
  bool support = PhiKernelSupportPrecision(
      phi_op_type, phi::Backend::GPU, precision, layout);
  support |= PhiKernelSupportPrecision(
      phi_op_type, phi::Backend::GPUDNN, precision, layout);

  if (!support) {
    const auto& all_kernels = framework::OperatorWithKernel::AllOpKernels();
    auto it = all_kernels.find(op_type);
    if (it != all_kernels.end()) {
      for (const auto& kern_pair : it->second) {
        if (platform::is_gpu_place(kern_pair.first.place_) &&
            kern_pair.first.data_type_ ==
                framework::TransToProtoVarType(precision)) {
          support = true;
          break;
        }
      }
    }
  }
  return support;
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
inline bool VarNodeHasDtype(Node* var_node) {
  auto type = var_node->Var()->GetType();
  return (type == VarType::SELECTED_ROWS) || (type == VarType::LOD_TENSOR) ||
         (type == VarType::LOD_TENSOR_ARRAY) || (type == VarType::STRINGS) ||
         (type == VarType::VOCAB);
}

inline bool IsFloatType(VarType::Type type) {
  return (type == VarType::FP64) || (type == VarType::FP32);
}

inline bool IsHalfType(VarType::Type type) {
  return (type == VarType::FP16) || (type == VarType::BF16);
}

};  // namespace

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
void DoInsertCastOp(Graph* graph,
                    Node* var_node,
                    Node* op_node,
                    VarType::Type from_type,
                    VarType::Type to_type,
                    framework::BlockDesc* block_desc,
                    int* suffix,
                    std::unordered_map<Node*, Node*>* cache) {
  if (from_type == to_type) return;

  auto update_cast_desc = [&](framework::OpDesc& desc,
                              const std::string& x_name,
                              const std::string& out_name,
                              const int in_dtype,
                              const int out_dtype) {
    desc.SetType("cast");
    desc.SetInput("X", {x_name});
    desc.SetOutput("Out", {out_name});
    desc.SetAttr("in_dtype", in_dtype);
    desc.SetAttr("out_dtype", out_dtype);
    desc.SetAttr("use_mkldnn", false);
    desc.SetAttr("with_quant_attr", false);
    desc.Flush();
  };

  if (cache->count(var_node) == 0) {
    // insert cast op between var_node and op_node
    std::string cast_input_name = var_node->Var()->Name();
    std::string cast_output_name =
        var_node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++);
    framework::OpDesc cast_op_desc(block_desc);
    update_cast_desc(cast_op_desc,
                     cast_input_name,
                     cast_output_name,
                     static_cast<int>(from_type),
                     static_cast<int>(to_type));
    auto* cast_op_node = graph->CreateOpNode(&cast_op_desc);
    auto* cast_output_vardesc = block_desc->Var(cast_output_name);
    cast_output_vardesc->SetPersistable(false);
    cast_output_vardesc->SetDataType(to_type);
    cast_output_vardesc->SetShape(var_node->Var()->GetShape());
    auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc);
    IR_NODE_LINK_TO(cast_op_node, cast_output_node);
    (*cache)[var_node] = cast_output_node;
  }
  op_node->Op()->Rename(var_node->Name(), cache->at(var_node)->Name());
  IR_NODE_LINK_TO(var_node, cache->at(var_node)->inputs[0]);
  IR_NODE_LINK_TO(cache->at(var_node), op_node);

  IR_NODE_UNLINK(var_node, op_node);
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156
bool OpSupportPrecision(const std::string& op_type,
                        phi::Backend backend,
                        phi::DataType precision,
                        const std::unordered_set<std::string>& black_list) {
  bool support = false;
  if (black_list.count(op_type) == 0) {
    if (backend == phi::Backend::GPU) {
      support = GpuKernelSupportPrecision(op_type, precision);
    } else {
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Now, only support backend of GPU."));
    }
  }
  return support;
157 158 159 160 161
}

// The set of ops that support fp16 calculation and are considered
// numerically-dangerous, slower and whose effects may also be observed in
// downstream ops.
162
void AutoMixedPrecisionPass::SetDefaultBlacklist() const {
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
  black_list_.insert({
      // numerically-dangerous
      "acos",
      "asin",
      "cosh",
      "tan",
      "exp",
      "expm1",
      "square",
      "log",
      "log2",
      "log10",
      "log1p",
      "logsumexp",
      "mean",
      "rsqrt",
      "sum",
      "cos_sim",
      "softmax",
      "softmax_with_cross_entropy",
      "sigmoid_cross_entropy_with_logits",
      "c_softmax_with_cross_entropy",
      "cross_entropy",
      "cross_entropy2",
      // slower than fp32
      "conv2d_transpose",
      // default fp32 can avoid return inf when the sum value large than 65504
      "reduce_sum",
  });
}

194 195 196 197 198 199 200 201 202 203
void AutoMixedPrecisionPass::Init(Graph* graph) const {
  bool enable_gpu_mixed = Get<bool>("enable_gpu_mixed");
  if (enable_gpu_mixed) {
    backend_ = phi::Backend::GPU;
  }

  skip_pass_ = !enable_gpu_mixed;

  low_precision_ = static_cast<phi::DataType>(Get<int>("mixed_precision_mode"));

204 205
  black_list_ = Get<std::unordered_set<std::string>>("mixed_black_list");
  SetDefaultBlacklist();
206 207 208 209 210 211 212 213 214
  VLOG(4) << "black_list has ";
  for (const auto& name : black_list_) {
    VLOG(4) << " - " << name;
  }

  keep_io_types_ = true;
  if (Has("keep_io_types")) {
    keep_io_types_ = Get<bool>("keep_io_types");
  }
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

  auto graph_size = graph->SubGraphsSize();
  VLOG(4) << "graph size: " << graph_size;
  subgraphes_.resize(graph_size);
  all_op_nodes_.resize(graph_size);

  for (size_t i = 0; i < graph_size; i++) {
    subgraphes_[i] = graph->GetSubGraph(i);
    all_op_nodes_[i] = TopologySortOperations(*subgraphes_[i]);
    VLOG(4) << "subgraph " << i << " has " << all_op_nodes_[i].size()
            << "op nodes";
    for (auto* var_node : subgraphes_[i]->Nodes()) {
      if (!var_node->IsVar()) continue;

      auto var_name = var_node->Var()->Name();
      if (real_vars_.count(var_name) == 0) {
        real_vars_[var_name] = var_node;
        VLOG(4) << var_name << " is in graph " << i;
      }
    }
  }
}

238 239 240 241 242 243 244 245 246 247
void AutoMixedPrecisionPass::ApplyImpl(Graph* graph) const {
  PADDLE_ENFORCE_NOT_NULL(graph,
                          platform::errors::PreconditionNotMet(
                              "During the auto_mixed_precision_pass, the graph "
                              "should not be nullptr."));
  PADDLE_ENFORCE_EQ(graph->IsMainGraph(),
                    true,
                    platform::errors::PreconditionNotMet(
                        "During the auto_mixed_precision_pass, the graph "
                        "should be main graph."));
248

249
  FusePassBase::Init("auto_mixed_precision", graph);
250 251 252

  Init(graph);
  VLOG(4) << "Init done";
253 254 255 256 257 258

  if (skip_pass_) {
    VLOG(3) << "Skip auto_mixed_precision_pass.";
    return;
  }

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
  SetOpUniqueType();
  VLOG(4) << "SetOpUniqueType done";
  GetOpPrecision();
  VLOG(4) << "GetOpPrecision done";
  UpdateOpPrecision();
  VLOG(4) << "UpdateOpPrecision done";
  SetVarPrecision();
  VLOG(4) << "SetVarPrecision done";
  ConvertWeightsData();
  VLOG(4) << "ConvertWeightsData done";
  ProcessOpWithDtypeAttr();
  VLOG(4) << "ProcessOpWithDtypeAttr done";
  InsertCastOp();
  VLOG(4) << "InsertCastOp done";
  RestoreOpOriginType();
  VLOG(4) << "RestoreOpOriginType done";
}

277
void AutoMixedPrecisionPass::SetOpUniqueType() const {
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
  int suffix = 0;
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();

      if (op_type == "feed" || op_type == "fetch") continue;

      std::string unique_type = op_type + "_" + std::to_string(suffix++);
      op_original_type_[unique_type] = op_type;
      op_node->Op()->SetType(unique_type);
      op_node->Op()->Flush();
      VLOG(4) << "change op type: " << op_type << " ---> " << unique_type;
    }
  }
}

294
void AutoMixedPrecisionPass::RestoreOpOriginType() const {
295 296 297 298 299 300 301 302 303 304 305
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
      op_node->Op()->SetType(GetOpOriginalType(op_type));
      op_node->Op()->Flush();
      VLOG(4) << "restore op type: " << op_type << " ---> "
              << op_node->Op()->Type();
    }
  }
}

306
inline std::string AutoMixedPrecisionPass::GetOpOriginalType(
307 308 309 310 311 312 313
    const std::string& op_type) const {
  if (op_original_type_.count(op_type)) {
    return op_original_type_.at(op_type);
  }
  return op_type;
}

314
void AutoMixedPrecisionPass::ProcessOpWithDtypeAttr() const {
315 316 317
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
318
      if (op_run_low_precision_.count(op_type) == 0) continue;
319 320 321 322 323 324

      if (op_node->Op()->HasAttr("dtype")) {
        auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
        if (IsFloatType(static_cast<VarType::Type>(dtype))) {
          op_node->Op()->SetAttr(
              "dtype",
325
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
326 327
          op_node->Op()->Flush();
          VLOG(4) << "process op with dtype attr: " << op_type << " ( " << dtype
328
                  << " --->" << static_cast<int>(low_precision_) << " )";
329 330 331 332 333 334 335
        }
      }
      if (op_node->Op()->HasAttr("out_dtype")) {
        auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
        if (IsFloatType(static_cast<VarType::Type>(out_dtype))) {
          op_node->Op()->SetAttr(
              "out_dtype",
336
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
337 338
          op_node->Op()->Flush();
          VLOG(4) << "process op with out_dtype attr: " << op_type << " ( "
339
                  << out_dtype << " --->" << static_cast<int>(low_precision_)
340 341 342 343 344 345 346
                  << " )";
        }
      }
    }
  }
}

347
void AutoMixedPrecisionPass::GetOpPrecision() const {
348 349 350
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
351
      bool support_low_precision = true;
352 353
      if (GetOpOriginalType(op_type) == "feed" ||
          GetOpOriginalType(op_type) == "fetch") {
354
        support_low_precision = !keep_io_types_;
355
      } else {
356 357
        support_low_precision = OpSupportPrecision(
            GetOpOriginalType(op_type), backend_, low_precision_, black_list_);
358 359 360 361
      }

      if (op_node->Op()->HasAttr("dtype")) {
        auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
362 363
        support_low_precision = support_low_precision &&
                                IsFloatType(static_cast<VarType::Type>(dtype));
364 365
      } else if (op_node->Op()->HasAttr("out_dtype")) {
        auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
366 367 368
        support_low_precision =
            support_low_precision &&
            IsFloatType(static_cast<VarType::Type>(out_dtype));
369 370
      } else {
        // if op's input var and output var is not dense tensor, the op should
371
        // not run at low precision.
372 373 374 375 376
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);
          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          if (real_in_var_node->Var()->Persistable()) continue;

377 378 379
          support_low_precision =
              support_low_precision &&
              (real_in_var_node->Var()->GetType() == VarType::LOD_TENSOR);
380 381 382 383 384 385 386
        }

        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);
          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          if (real_out_var_node->Var()->Persistable()) continue;

387 388 389
          support_low_precision =
              support_low_precision &&
              (real_out_var_node->Var()->GetType() == VarType::LOD_TENSOR);
390 391 392
        }
      }

393 394 395
      if (support_low_precision) {
        op_run_low_precision_.insert(op_type);
        VLOG(4) << "support precision: " << op_type << " run at low precision";
396
      } else {
397 398
        VLOG(4) << "support precision: " << op_type
                << " not run at low precision";
399 400 401 402 403
      }
    }
  }
}

404 405
void AutoMixedPrecisionPass::UpdateOpPrecision() const {
  std::unordered_set<std::string> vars_should_not_low_precision;
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

  // var -> the var's all input op
  std::unordered_map<std::string, std::vector<Node*>> var_input_ops;

  auto GetVarInputOps = [&] {
    for (const auto& nodes : all_op_nodes_) {
      for (auto* op_node : nodes) {
        auto op_type = op_node->Op()->Type();

        if (GetOpOriginalType(op_type) == "fetch") continue;
        if (op_node->Op()->HasAttr("sub_block")) continue;

        for (auto* var_node : op_node->outputs) {
          CHECK_EQ(var_node->IsVar(), true);
          if (var_node->Var()->Persistable()) continue;
          if (!VarNodeHasDtype(var_node)) continue;

          var_input_ops[var_node->Var()->Name()].push_back(op_node);
          VLOG(4) << "var input ops: " << var_node->Var()->Name()
                  << " is output of " << op_type;
        }

428 429 430
        // the select_input op's input var should not convert to low precision.
        // when op's output var is select_input op's input var, the op should
        // not run at low precision.
431 432 433 434 435 436
        if (GetOpOriginalType(op_node->Op()->Type()) == "select_input") {
          for (auto* in_var_node : op_node->inputs) {
            CHECK_EQ(in_var_node->IsVar(), true);
            if (in_var_node->Var()->Persistable()) continue;
            if (!VarNodeHasDtype(in_var_node)) continue;

437
            vars_should_not_low_precision.insert(in_var_node->Var()->Name());
438 439 440 441 442 443 444 445 446 447 448 449
          }
        }
      }
    }
  };
  GetVarInputOps();

  bool precision_updated = false;
  do {
    precision_updated = false;
    for (const auto& nodes : all_op_nodes_) {
      for (auto* op_node : nodes) {
450
        if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) continue;
451 452 453 454 455 456 457 458

        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);
          if (!VarNodeHasDtype(out_var_node)) continue;

          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          if (real_out_var_node->Var()->Persistable()) continue;

459
          bool not_run_low_precision = false;
460 461
          const auto& input_op_nodes =
              var_input_ops[real_out_var_node->Var()->Name()];
462 463 464
          if (vars_should_not_low_precision.count(
                  real_out_var_node->Var()->Name())) {
            not_run_low_precision = true;
465 466
          } else {
            for (auto* node : input_op_nodes) {
467 468
              if (op_run_low_precision_.count(node->Op()->Type()) == 0) {
                not_run_low_precision = true;
469 470 471 472
                break;
              }
            }
          }
473 474
          if (not_run_low_precision) {
            op_run_low_precision_.erase(op_node->Op()->Type());
475 476
            precision_updated = true;
            VLOG(4) << op_node->Op()->Type()
477
                    << " should not run at low precision.";
478 479 480 481 482 483 484 485 486
            break;
          }
        }
      }
    }
  } while (precision_updated);
}

// special ops, its weights should not be low precision.
487 488
bool AutoMixedPrecisionPass::InputVarsNotConvert(
    Node* op_node, const std::string& var_name) const {
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
  auto* op_desc = op_node->Op();
  if (GetOpOriginalType(op_desc->Type()) == "batch_norm") {
    auto vecs = op_desc->Input("Bias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Mean");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Scale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Variance");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  } else if (GetOpOriginalType(op_desc->Type()) == "fused_multi_transformer") {
    auto vecs = op_desc->Input("LnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("LnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("FFNLnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("FFNLnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  }
  return false;
}

528 529
bool AutoMixedPrecisionPass::OutputVarsNotConvert(
    Node* op_node, const std::string& var_name) const {
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
  auto* op_desc = op_node->Op();
  // batch_norm's input and output (variance and mean) are the same.
  if (GetOpOriginalType(op_desc->Type()) == "batch_norm") {
    auto vecs = op_desc->Output("MeanOut");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("VarianceOut");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedMean");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedVariance");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  }
  return false;
}

553
void AutoMixedPrecisionPass::SetVarPrecision() const {
554 555
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
556 557 558 559 560
      if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) {
        continue;
      }

      if (GetOpOriginalType(op_node->Op()->Type()) != "feed") {
561 562 563 564 565 566 567 568 569 570 571 572
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);

          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          auto in_var_name = real_in_var_node->Var()->Name();

          if (!IsFloatType(real_in_var_node->Var()->GetDataType())) continue;
          if (!VarNodeHasDtype(real_in_var_node)) continue;
          if (InputVarsNotConvert(op_node, in_var_name)) continue;

          if (real_in_var_node->Var()->Persistable()) {
            real_in_var_node->Var()->SetDataType(
573 574
                framework::TransToProtoVarType(low_precision_));
            vars_convert_to_low_precision_.insert(in_var_name);
575 576
          }
        }
577
      }
578

579
      if (GetOpOriginalType(op_node->Op()->Type()) != "fetch") {
580 581 582 583 584 585 586 587 588 589 590
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);

          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          auto out_var_name = real_out_var_node->Var()->Name();

          if (!IsFloatType(real_out_var_node->Var()->GetDataType())) continue;
          if (!VarNodeHasDtype(real_out_var_node)) continue;
          if (OutputVarsNotConvert(op_node, out_var_name)) continue;

          real_out_var_node->Var()->SetDataType(
591
              framework::TransToProtoVarType(low_precision_));
592
          if (real_out_var_node->Var()->Persistable()) {
593
            vars_convert_to_low_precision_.insert(out_var_name);
594 595 596 597 598 599 600 601 602 603 604 605 606 607
          }
        }
      }
    }
  }

  // This code used to precess vars with the same name. Vars with the same
  // name should have the same data type.
  for (auto* subgraph : subgraphes_) {
    for (auto* var_node : subgraph->Nodes()) {
      if (!var_node->IsVar() || !var_node->Var()->Persistable()) continue;
      if (!VarNodeHasDtype(var_node)) continue;

      auto var_name = var_node->Var()->Name();
608
      if (vars_convert_to_low_precision_.count(var_name)) {
609
        var_node->Var()->SetDataType(
610
            framework::TransToProtoVarType(low_precision_));
611 612 613 614 615
      }
    }
  }
}

616
void AutoMixedPrecisionPass::ConvertWeightsData() const {
617
  auto* scope = param_scope();
618 619 620 621
  PADDLE_ENFORCE_NOT_NULL(scope,
                          platform::errors::PreconditionNotMet(
                              "During the auto_mixed_precision_pass, the scope "
                              "should not be null."));
622 623 624

  auto var_names = scope->LocalVarNames();
  for (const auto& var_name : var_names) {
625
    if (vars_convert_to_low_precision_.count(var_name)) {
626 627 628
      VLOG(4) << var_name << "'s data type was convert to half";

      auto* var = scope->FindLocalVar(var_name);
629 630 631 632
      CHECK_EQ(var->IsType<phi::DenseTensor>(), true);

      auto* origin_tensor = var->GetMutable<phi::DenseTensor>();

633 634 635
      phi::DenseTensor low_precision_tensor;
      low_precision_tensor.Resize(origin_tensor->dims());
      low_precision_tensor.set_type(low_precision_);
636

637 638 639 640
      if (low_precision_ == phi::DataType::FLOAT16) {
        auto* low_precision_data =
            low_precision_tensor.mutable_data<phi::dtype::float16>(
                phi::CPUPlace{});
641 642 643
        for (int64_t i = 0; i < origin_tensor->numel(); i++) {
          if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
            auto* origin_data = origin_tensor->data<double>();
644 645
            low_precision_data[i] =
                static_cast<phi::dtype::float16>(origin_data[i]);
646 647
          } else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
            auto* origin_data = origin_tensor->data<float>();
648 649
            low_precision_data[i] =
                static_cast<phi::dtype::float16>(origin_data[i]);
650 651
          }
        }
652
      } else if (low_precision_ == phi::DataType::BFLOAT16) {
653
        auto* half_data =
654 655
            low_precision_tensor.mutable_data<phi::dtype::bfloat16>(
                phi::CPUPlace{});
656 657 658 659 660 661 662 663
        for (int64_t i = 0; i < origin_tensor->numel(); i++) {
          if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
            auto* origin_data = origin_tensor->data<double>();
            half_data[i] = static_cast<phi::dtype::bfloat16>(origin_data[i]);
          } else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
            auto* origin_data = origin_tensor->data<float>();
            half_data[i] = static_cast<phi::dtype::bfloat16>(origin_data[i]);
          }
664 665
        }
      }
666 667
      origin_tensor->clear();
      paddle::framework::TensorCopySync(
668
          low_precision_tensor, phi::CPUPlace{}, origin_tensor);
669 670 671 672
    }
  }
}

673
void AutoMixedPrecisionPass::InsertCastOp() const {
674 675 676 677 678 679 680 681 682 683 684 685 686
  int suffix = 0;
  std::unordered_map<Node*, Node*> cache;

  for (size_t i = 0; i < all_op_nodes_.size(); i++) {
    auto* block_desc = all_op_nodes_[i][0]->Op()->Block();
    CHECK_NOTNULL(block_desc);
    for (auto* op_node : all_op_nodes_[i]) {
      auto op_type = op_node->Op()->Type();

      if (GetOpOriginalType(op_type) == "feed") continue;
      if (op_node->Op()->HasAttr("sub_block")) continue;

      VLOG(4) << "process op: " << op_type
687
              << " run low precision: " << op_run_low_precision_.count(op_type);
688 689 690 691 692 693 694 695 696 697 698 699 700 701

      auto inputs = op_node->inputs;
      for (auto* in_var_node : inputs) {
        if (!in_var_node->IsVar()) continue;
        if (!VarNodeHasDtype(in_var_node)) continue;
        if (in_var_node->Var()->Persistable()) continue;

        auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];

        auto in_var_type = real_in_var_node->Var()->GetDataType();

        VLOG(4) << "process var: " << real_in_var_node->Var()->Name()
                << " with type " << in_var_type;

702
        if (IsFloatType(in_var_type) && op_run_low_precision_.count(op_type)) {
703 704 705 706
          DoInsertCastOp(subgraphes_[i],
                         in_var_node,
                         op_node,
                         in_var_type,
707
                         framework::TransToProtoVarType(low_precision_),
708 709 710 711
                         block_desc,
                         &suffix,
                         &cache);
        } else if (IsHalfType(in_var_type) &&
712
                   op_run_low_precision_.count(op_type) == 0) {
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
          DoInsertCastOp(subgraphes_[i],
                         in_var_node,
                         op_node,
                         in_var_type,
                         VarType::FP32,
                         block_desc,
                         &suffix,
                         &cache);
        }
      }

      // Special op.
      // fused_multi_transformer's input(CacheKV) and output(CacheKVOut) vars
      // have same name.
      if (GetOpOriginalType(op_type) == "fused_multi_transformer") {
        auto cache_kv_inputs = op_node->Op()->Input("CacheKV");
        auto cache_kv_outputs = op_node->Op()->Output("CacheKVOut");
        CHECK_EQ(cache_kv_inputs.size(), cache_kv_outputs.size());
        for (size_t i = 0; i < cache_kv_inputs.size(); ++i) {
          op_node->Op()->RenameOutput(cache_kv_outputs[i], cache_kv_inputs[i]);
        }
      }
    }
  }
  VLOG(4) << "insert number of cast op: " << cache.size();
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

744 745
REGISTER_PASS(auto_mixed_precision_pass,
              paddle::framework::ir::AutoMixedPrecisionPass);