transforms.py 40.8 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import math
import sys
import random

import numpy as np
import numbers
import types
import collections
import warnings
import traceback

L
LielinJiang 已提交
28
from paddle.utils import try_import
L
LielinJiang 已提交
29 30 31 32 33 34 35 36 37 38
from . import functional as F

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

__all__ = [
39 40 41 42 43
    "BaseTransform", "Compose", "Resize", "RandomResizedCrop", "CenterCrop",
    "RandomHorizontalFlip", "RandomVerticalFlip", "Transpose", "Normalize",
    "BrightnessTransform", "SaturationTransform", "ContrastTransform",
    "HueTransform", "ColorJitter", "RandomCrop", "Pad", "RandomRotation",
    "Grayscale", "ToTensor"
L
LielinJiang 已提交
44 45 46
]


47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif F._is_numpy_image(img):
        return img.shape[:2][::-1]
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


def _check_input(value,
                 name,
                 center=1,
                 bound=(0, float('inf')),
                 clip_first_on_zero=True):
    if isinstance(value, numbers.Number):
        if value < 0:
            raise ValueError(
                "If {} is a single number, it must be non negative.".format(
                    name))
        value = [center - value, center + value]
        if clip_first_on_zero:
            value[0] = max(value[0], 0)
    elif isinstance(value, (tuple, list)) and len(value) == 2:
        if not bound[0] <= value[0] <= value[1] <= bound[1]:
            raise ValueError("{} values should be between {}".format(name,
                                                                     bound))
    else:
        raise TypeError(
            "{} should be a single number or a list/tuple with lenght 2.".
            format(name))

    if value[0] == value[1] == center:
        value = None
    return value


L
LielinJiang 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
class Compose(object):
    """
    Composes several transforms together use for composing list of transforms
    together for a dataset transform.

    Args:
        transforms (list): List of transforms to compose.

    Returns:
        A compose object which is callable, __call__ for this Compose
        object will call each given :attr:`transforms` sequencely.

    Examples:
    
        .. code-block:: python

99 100
            from paddle.vision.datasets import Flowers
            from paddle.vision.transforms import Compose, ColorJitter, Resize
L
LielinJiang 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113

            transform = Compose([ColorJitter(), Resize(size=608)])
            flowers = Flowers(mode='test', transform=transform)

            for i in range(10):
                sample = flowers[i]
                print(sample[0].shape, sample[1])

    """

    def __init__(self, transforms):
        self.transforms = transforms

114
    def __call__(self, data):
L
LielinJiang 已提交
115 116
        for f in self.transforms:
            try:
117
                data = f(data)
L
LielinJiang 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
            except Exception as e:
                stack_info = traceback.format_exc()
                print("fail to perform transform [{}] with error: "
                      "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e
        return data

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


134 135 136
class BaseTransform(object):
    """
    Base class of all transforms used in computer vision.
L
LielinJiang 已提交
137

138 139 140 141 142 143 144 145 146
    calling logic: 

        if keys is None:
            _get_params -> _apply_image()
        else:
            _get_params -> _apply_*() for * in keys 

    If you want to implement a self-defined transform method for image,
    rewrite _apply_* method in subclass.
L
LielinJiang 已提交
147

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    Args:
        keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures,
            key is used to specify the type of input. For example, if your input
            is image type, then the key can be None or ("image"). if your input
            is (image, image) type, then the keys should be ("image", "image"). 
            if your input is (image, boxes), then the keys should be ("image", "boxes").

            Current available strings & data type are describe below:

            - "image": input image, with shape of (H, W, C) 
            - "coords": coordinates, with shape of (N, 2) 
            - "boxes": bounding boxes, with shape of (N, 4), "xyxy" format, 
            
                       the 1st "xy" represents top left point of a box, 
                       the 2nd "xy" represents right bottom point.

            - "mask": map used for segmentation, with shape of (H, W, 1)
            
            You can also customize your data types only if you implement the corresponding
            _apply_*() methods, otherwise ``NotImplementedError`` will be raised.
    
L
LielinJiang 已提交
169 170 171 172 173
    Examples:
    
        .. code-block:: python

            import numpy as np
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
            from PIL import Image
            import paddle.vision.transforms.functional as F
            from paddle.vision.transforms import BaseTransform

            def _get_image_size(img):
                if F._is_pil_image(img):
                    return img.size
                elif F._is_numpy_image(img):
                    return img.shape[:2][::-1]
                else:
                    raise TypeError("Unexpected type {}".format(type(img)))

            class CustomRandomFlip(BaseTransform):
                def __init__(self, prob=0.5, keys=None):
                    super(CustomRandomFlip, self).__init__(keys)
                    self.prob = prob

                def _get_params(self, inputs):
                    image = inputs[self.keys.index('image')]
                    params = {}
                    params['flip'] = np.random.random() < self.prob
                    params['size'] = _get_image_size(image)
                    return params

                def _apply_image(self, image):
                    if self.params['flip']:
                        return F.hflip(image)
                    return image

                # if you only want to transform image, do not need to rewrite this function
                def _apply_coords(self, coords):
                    if self.params['flip']:
                        w = self.params['size'][0]
                        coords[:, 0] = w - coords[:, 0]
                    return coords

                # if you only want to transform image, do not need to rewrite this function
                def _apply_boxes(self, boxes):
                    idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
                    coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2)
                    coords = self._apply_coords(coords).reshape((-1, 4, 2))
                    minxy = coords.min(axis=1)
                    maxxy = coords.max(axis=1)
                    trans_boxes = np.concatenate((minxy, maxxy), axis=1)
                    return trans_boxes
                    
                # if you only want to transform image, do not need to rewrite this function
                def _apply_mask(self, mask):
                    if self.params['flip']:
                        return F.hflip(mask)
                    return mask

            # create fake inputs
            fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8'))
            fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]])
            fake_mask = fake_img.convert('L')

            # only transform for image:
            flip_transform = CustomRandomFlip(1.0)
            converted_img = flip_transform(fake_img)

            # transform for image, boxes and mask
            flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask'))
            (converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask))
            print('converted boxes', converted_boxes)
L
LielinJiang 已提交
239 240 241

    """

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    def __init__(self, keys=None):
        if keys is None:
            keys = ("image", )
        elif not isinstance(keys, Sequence):
            raise ValueError(
                "keys should be a sequence, but got keys={}".format(keys))
        for k in keys:
            if self._get_apply(k) is None:
                raise NotImplementedError(
                    "{} is unsupported data structure".format(k))
        self.keys = keys

        # storage some params get from function get_params()
        self.params = None

    def _get_params(self, inputs):
        pass

    def __call__(self, inputs):
        """Apply transform on single input data"""
        if not isinstance(inputs, tuple):
            inputs = (inputs, )

        self.params = self._get_params(inputs)

        outputs = []
        for i in range(min(len(inputs), len(self.keys))):
            apply_func = self._get_apply(self.keys[i])
            if apply_func is None:
                outputs.append(inputs[i])
            else:
                outputs.append(apply_func(inputs[i]))
        if len(inputs) > len(self.keys):
275
            outputs.extend(inputs[len(self.keys):])
276 277 278 279 280 281

        if len(outputs) == 1:
            outputs = outputs[0]
        else:
            outputs = tuple(outputs)
        return outputs
L
LielinJiang 已提交
282

283 284
    def _get_apply(self, key):
        return getattr(self, "_apply_{}".format(key), None)
L
LielinJiang 已提交
285

286 287
    def _apply_image(self, image):
        raise NotImplementedError
L
LielinJiang 已提交
288

289 290
    def _apply_boxes(self, boxes):
        raise NotImplementedError
L
LielinJiang 已提交
291

292 293
    def _apply_mask(self, mask):
        raise NotImplementedError
L
LielinJiang 已提交
294

295 296 297 298

class ToTensor(BaseTransform):
    """Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``.

L
LielinJiang 已提交
299 300 301 302 303 304 305 306 307 308
    Converts a PIL.Image or numpy.ndarray (H x W x C) to a paddle.Tensor of shape (C x H x W).

    If input is a grayscale image (H x W), it will be converted to a image of shape (H x W x 1). 
    And the shape of output tensor will be (1 x H x W).

    If you want to keep the shape of output tensor as (H x W x C), you can set data_format = ``HWC`` .

    Converts a PIL.Image or numpy.ndarray in the range [0, 255] to a paddle.Tensor in the 
    range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, 
    RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8. 
309 310 311 312

    In the other cases, tensors are returned without scaling.

    Args:
L
LielinJiang 已提交
313
        data_format (str, optional): Data format of output tensor, should be 'HWC' or 
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
            'CHW'. Default: 'CHW'.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
    Examples:
    
        .. code-block:: python

            import numpy as np
            from PIL import Image

            import paddle.vision.transforms as T
            import paddle.vision.transforms.functional as F

            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))

            transform = T.ToTensor()

            tensor = transform(fake_img)

    """

    def __init__(self, data_format='CHW', keys=None):
        super(ToTensor, self).__init__(keys)
        self.data_format = data_format

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(img, self.data_format)


class Resize(BaseTransform):
L
LielinJiang 已提交
351 352 353 354 355 356 357 358
    """Resize the input Image to the given size.

    Args:
        size (int|list|tuple): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. 
            when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
374 375 376 377 378 379

    Examples:
    
        .. code-block:: python

            import numpy as np
380
            from PIL import Image
381
            from paddle.vision.transforms import Resize
L
LielinJiang 已提交
382 383 384

            transform = Resize(size=224)

385
            fake_img = Image.fromarray((np.random.rand(100, 120, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
386 387

            fake_img = transform(fake_img)
388
            print(fake_img.size)
L
LielinJiang 已提交
389 390
    """

391 392
    def __init__(self, size, interpolation='bilinear', keys=None):
        super(Resize, self).__init__(keys)
L
LielinJiang 已提交
393 394 395 396 397
        assert isinstance(size, int) or (isinstance(size, Iterable) and
                                         len(size) == 2)
        self.size = size
        self.interpolation = interpolation

398
    def _apply_image(self, img):
L
LielinJiang 已提交
399 400 401
        return F.resize(img, self.size, self.interpolation)


402
class RandomResizedCrop(BaseTransform):
L
LielinJiang 已提交
403 404 405 406 407 408
    """Crop the input data to random size and aspect ratio.
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
    After applying crop transfrom, the input data will be resized to given size.

    Args:
409
        size (int|list|tuple): Target size of output image, with (height, width) shape.
410 411
        scale (list|tuple): Scale range of the cropped image before resizing, relatively to the origin 
            image. Default: (0.08, 1.0)
L
LielinJiang 已提交
412
        ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend, 
            support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
428 429 430 431 432 433

    Examples:
    
        .. code-block:: python

            import numpy as np
434
            from PIL import Image
435
            from paddle.vision.transforms import RandomResizedCrop
L
LielinJiang 已提交
436 437 438

            transform = RandomResizedCrop(224)

439
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
440 441

            fake_img = transform(fake_img)
442 443
            print(fake_img.size)

L
LielinJiang 已提交
444 445 446
    """

    def __init__(self,
447
                 size,
L
LielinJiang 已提交
448 449
                 scale=(0.08, 1.0),
                 ratio=(3. / 4, 4. / 3),
450 451 452 453 454
                 interpolation='bilinear',
                 keys=None):
        super(RandomResizedCrop, self).__init__(keys)
        if isinstance(size, int):
            self.size = (size, size)
L
LielinJiang 已提交
455
        else:
456
            self.size = size
L
LielinJiang 已提交
457 458 459 460 461 462
        assert (scale[0] <= scale[1]), "scale should be of kind (min, max)"
        assert (ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        self.scale = scale
        self.ratio = ratio
        self.interpolation = interpolation

463 464
    def _get_param(self, image, attempts=10):
        width, height = _get_image_size(image)
L
LielinJiang 已提交
465 466 467 468 469 470 471 472 473 474 475
        area = height * width

        for _ in range(attempts):
            target_area = np.random.uniform(*self.scale) * area
            log_ratio = tuple(math.log(x) for x in self.ratio)
            aspect_ratio = math.exp(np.random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
476 477 478
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
                return i, j, h, w
L
LielinJiang 已提交
479 480 481 482 483 484 485 486 487

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if in_ratio < min(self.ratio):
            w = width
            h = int(round(w / min(self.ratio)))
        elif in_ratio > max(self.ratio):
            h = height
            w = int(round(h * max(self.ratio)))
488 489
        else:
            # return whole image
L
LielinJiang 已提交
490 491
            w = width
            h = height
492 493 494
        i = (height - h) // 2
        j = (width - w) // 2
        return i, j, h, w
L
LielinJiang 已提交
495

496 497
    def _apply_image(self, img):
        i, j, h, w = self._get_param(img)
L
LielinJiang 已提交
498

499
        cropped_img = F.crop(img, i, j, h, w)
L
LielinJiang 已提交
500 501 502
        return F.resize(cropped_img, self.size, self.interpolation)


503
class CenterCrop(BaseTransform):
L
LielinJiang 已提交
504 505 506
    """Crops the given the input data at the center.

    Args:
507 508 509
        size (int|list|tuple): Target size of output image, with (height, width) shape.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

L
LielinJiang 已提交
510 511 512 513 514
    Examples:
    
        .. code-block:: python

            import numpy as np
515
            from PIL import Image
516
            from paddle.vision.transforms import CenterCrop
L
LielinJiang 已提交
517 518 519

            transform = CenterCrop(224)

520
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
521 522

            fake_img = transform(fake_img)
523
            print(fake_img.size)
L
LielinJiang 已提交
524 525
    """

526 527 528 529
    def __init__(self, size, keys=None):
        super(CenterCrop, self).__init__(keys)
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
L
LielinJiang 已提交
530
        else:
531
            self.size = size
L
LielinJiang 已提交
532

533 534
    def _apply_image(self, img):
        return F.center_crop(img, self.size)
L
LielinJiang 已提交
535 536


537
class RandomHorizontalFlip(BaseTransform):
L
LielinJiang 已提交
538 539 540
    """Horizontally flip the input data randomly with a given probability.

    Args:
B
Bin Lu 已提交
541
        prob (float, optional): Probability of the input data being flipped. Should be in [0, 1]. Default: 0.5
542
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
543 544 545 546 547 548

    Examples:
    
        .. code-block:: python

            import numpy as np
549
            from PIL import Image
550
            from paddle.vision.transforms import RandomHorizontalFlip
L
LielinJiang 已提交
551

B
Bin Lu 已提交
552
            transform = RandomHorizontalFlip(0.5)
L
LielinJiang 已提交
553

554
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
555 556

            fake_img = transform(fake_img)
557
            print(fake_img.size)
L
LielinJiang 已提交
558 559
    """

560 561
    def __init__(self, prob=0.5, keys=None):
        super(RandomHorizontalFlip, self).__init__(keys)
L
LielinJiang 已提交
562 563
        self.prob = prob

564 565 566
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.hflip(img)
L
LielinJiang 已提交
567 568 569
        return img


570
class RandomVerticalFlip(BaseTransform):
L
LielinJiang 已提交
571 572 573
    """Vertically flip the input data randomly with a given probability.

    Args:
574 575
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
576 577 578 579 580 581

    Examples:
    
        .. code-block:: python

            import numpy as np
582
            from PIL import Image
583
            from paddle.vision.transforms import RandomVerticalFlip
L
LielinJiang 已提交
584 585 586

            transform = RandomVerticalFlip(224)

587
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
588 589

            fake_img = transform(fake_img)
590 591
            print(fake_img.size)

L
LielinJiang 已提交
592 593
    """

594 595
    def __init__(self, prob=0.5, keys=None):
        super(RandomVerticalFlip, self).__init__(keys)
L
LielinJiang 已提交
596 597
        self.prob = prob

598 599 600
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.vflip(img)
L
LielinJiang 已提交
601 602 603
        return img


604
class Normalize(BaseTransform):
L
LielinJiang 已提交
605 606 607 608 609 610 611 612
    """Normalize the input data with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
    this transform will normalize each channel of the input data.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    Args:
        mean (int|float|list): Sequence of means for each channel.
        std (int|float|list): Sequence of standard deviations for each channel.
613 614 615 616 617
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
618 619 620 621 622
    Examples:
    
        .. code-block:: python

            import numpy as np
623
            from PIL import Image
624
            from paddle.vision.transforms import Normalize
L
LielinJiang 已提交
625

626 627 628
            normalize = Normalize(mean=[127.5, 127.5, 127.5], 
                                  std=[127.5, 127.5, 127.5],
                                  data_format='HWC')
L
LielinJiang 已提交
629

630
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
631 632 633

            fake_img = normalize(fake_img)
            print(fake_img.shape)
634
            print(fake_img.max, fake_img.max)
L
LielinJiang 已提交
635 636 637
    
    """

638 639 640 641 642 643 644
    def __init__(self,
                 mean=0.0,
                 std=1.0,
                 data_format='CHW',
                 to_rgb=False,
                 keys=None):
        super(Normalize, self).__init__(keys)
L
LielinJiang 已提交
645 646 647 648
        if isinstance(mean, numbers.Number):
            mean = [mean, mean, mean]

        if isinstance(std, numbers.Number):
L
LielinJiang 已提交
649
            std = [std, std, std]
L
LielinJiang 已提交
650

651 652 653 654
        self.mean = mean
        self.std = std
        self.data_format = data_format
        self.to_rgb = to_rgb
L
LielinJiang 已提交
655

656 657 658
    def _apply_image(self, img):
        return F.normalize(img, self.mean, self.std, self.data_format,
                           self.to_rgb)
L
LielinJiang 已提交
659 660


661 662
class Transpose(BaseTransform):
    """Transpose input data to a target format.
L
LielinJiang 已提交
663 664
    For example, most transforms use HWC mode image,
    while the Neural Network might use CHW mode input tensor.
665
    output image will be an instance of numpy.ndarray. 
L
LielinJiang 已提交
666 667

    Args:
668 669 670
        order (list|tuple, optional): Target order of input data. Default: (2, 0, 1).
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
671 672 673 674 675
    Examples:
    
        .. code-block:: python

            import numpy as np
676 677
            from PIL import Image
            from paddle.vision.transforms import Transpose
L
LielinJiang 已提交
678

679
            transform = Transpose()
L
LielinJiang 已提交
680

681
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
682 683 684 685 686 687

            fake_img = transform(fake_img)
            print(fake_img.shape)
    
    """

688 689 690 691 692 693 694
    def __init__(self, order=(2, 0, 1), keys=None):
        super(Transpose, self).__init__(keys)
        self.order = order

    def _apply_image(self, img):
        if F._is_pil_image(img):
            img = np.asarray(img)
L
LielinJiang 已提交
695

696 697
        if len(img.shape) == 2:
            img = img[..., np.newaxis]
698
        return img.transpose(self.order)
L
LielinJiang 已提交
699 700


701
class BrightnessTransform(BaseTransform):
L
LielinJiang 已提交
702 703 704 705 706
    """Adjust brightness of the image.

    Args:
        value (float): How much to adjust the brightness. Can be any
            non negative number. 0 gives the original image
707
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
708 709 710 711 712 713

    Examples:
    
        .. code-block:: python

            import numpy as np
714
            from PIL import Image
715
            from paddle.vision.transforms import BrightnessTransform
L
LielinJiang 已提交
716 717 718

            transform = BrightnessTransform(0.4)

719
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
720 721

            fake_img = transform(fake_img)
722
            
L
LielinJiang 已提交
723 724
    """

725 726 727
    def __init__(self, value, keys=None):
        super(BrightnessTransform, self).__init__(keys)
        self.value = _check_input(value, 'brightness')
L
LielinJiang 已提交
728

729 730
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
731 732
            return img

733 734
        brightness_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_brightness(img, brightness_factor)
L
LielinJiang 已提交
735 736


737
class ContrastTransform(BaseTransform):
L
LielinJiang 已提交
738 739 740 741 742
    """Adjust contrast of the image.

    Args:
        value (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives the original image
743
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
744 745 746 747 748 749

    Examples:
    
        .. code-block:: python

            import numpy as np
750
            from PIL import Image
751
            from paddle.vision.transforms import ContrastTransform
L
LielinJiang 已提交
752 753 754

            transform = ContrastTransform(0.4)

755
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
756 757

            fake_img = transform(fake_img)
758

L
LielinJiang 已提交
759 760
    """

761 762
    def __init__(self, value, keys=None):
        super(ContrastTransform, self).__init__(keys)
L
LielinJiang 已提交
763 764
        if value < 0:
            raise ValueError("contrast value should be non-negative")
765
        self.value = _check_input(value, 'contrast')
L
LielinJiang 已提交
766

767 768
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
769 770
            return img

771 772
        contrast_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_contrast(img, contrast_factor)
L
LielinJiang 已提交
773 774


775
class SaturationTransform(BaseTransform):
L
LielinJiang 已提交
776 777 778 779 780
    """Adjust saturation of the image.

    Args:
        value (float): How much to adjust the saturation. Can be any
            non negative number. 0 gives the original image
781
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
782 783 784 785 786 787

    Examples:
    
        .. code-block:: python

            import numpy as np
788
            from PIL import Image
789
            from paddle.vision.transforms import SaturationTransform
L
LielinJiang 已提交
790 791 792

            transform = SaturationTransform(0.4)

793
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
794 795
        
            fake_img = transform(fake_img)
796

L
LielinJiang 已提交
797 798
    """

799 800 801
    def __init__(self, value, keys=None):
        super(SaturationTransform, self).__init__(keys)
        self.value = _check_input(value, 'saturation')
L
LielinJiang 已提交
802

803 804
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
805 806
            return img

807 808
        saturation_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_saturation(img, saturation_factor)
L
LielinJiang 已提交
809

L
LielinJiang 已提交
810

811
class HueTransform(BaseTransform):
L
LielinJiang 已提交
812 813 814 815 816
    """Adjust hue of the image.

    Args:
        value (float): How much to adjust the hue. Can be any number
            between 0 and 0.5, 0 gives the original image
817
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
818 819 820 821 822 823

    Examples:
    
        .. code-block:: python

            import numpy as np
824
            from PIL import Image
825
            from paddle.vision.transforms import HueTransform
L
LielinJiang 已提交
826 827 828

            transform = HueTransform(0.4)

829
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
830 831

            fake_img = transform(fake_img)
832

L
LielinJiang 已提交
833 834
    """

835 836 837 838
    def __init__(self, value, keys=None):
        super(HueTransform, self).__init__(keys)
        self.value = _check_input(
            value, 'hue', center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
L
LielinJiang 已提交
839

840 841
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
842 843
            return img

844 845
        hue_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_hue(img, hue_factor)
L
LielinJiang 已提交
846 847


848
class ColorJitter(BaseTransform):
L
LielinJiang 已提交
849 850 851 852
    """Randomly change the brightness, contrast, saturation and hue of an image.

    Args:
        brightness: How much to jitter brightness.
L
LielinJiang 已提交
853
            Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers.
L
LielinJiang 已提交
854
        contrast: How much to jitter contrast.
L
LielinJiang 已提交
855
            Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers.
L
LielinJiang 已提交
856
        saturation: How much to jitter saturation.
L
LielinJiang 已提交
857
            Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
L
LielinJiang 已提交
858
        hue: How much to jitter hue.
L
LielinJiang 已提交
859
            Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
860
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
861 862 863 864 865 866

    Examples:
    
        .. code-block:: python

            import numpy as np
867
            from PIL import Image
868
            from paddle.vision.transforms import ColorJitter
L
LielinJiang 已提交
869

870
            transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
L
LielinJiang 已提交
871

872
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
873 874

            fake_img = transform(fake_img)
875

L
LielinJiang 已提交
876 877
    """

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0,
                 keys=None):
        super(ColorJitter, self).__init__(keys)
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def _get_param(self, brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
L
LielinJiang 已提交
895
        transforms = []
896 897 898 899 900 901 902 903 904 905 906 907

        if brightness is not None:
            transforms.append(BrightnessTransform(brightness, self.keys))

        if contrast is not None:
            transforms.append(ContrastTransform(contrast, self.keys))

        if saturation is not None:
            transforms.append(SaturationTransform(saturation, self.keys))

        if hue is not None:
            transforms.append(HueTransform(hue, self.keys))
L
LielinJiang 已提交
908 909

        random.shuffle(transforms)
910
        transform = Compose(transforms)
L
LielinJiang 已提交
911

912
        return transform
L
LielinJiang 已提交
913

914 915 916 917
    def _apply_image(self, img):
        """
        Args:
            img (PIL Image): Input image.
L
LielinJiang 已提交
918

919 920 921 922 923 924 925 926 927
        Returns:
            PIL Image: Color jittered image.
        """
        transform = self._get_param(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)


class RandomCrop(BaseTransform):
L
LielinJiang 已提交
928 929 930 931 932 933 934 935 936 937 938
    """Crops the given CV Image at a random location.

    Args:
        size (sequence|int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int|sequence|optional): Optional padding on each border
            of the image. If a sequence of length 4 is provided, it is used to pad left, 
            top, right, bottom borders respectively. Default: 0.
        pad_if_needed (boolean|optional): It will pad the image if smaller than the
            desired size to avoid raising an exception. Default: False.
939 940
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
941 942 943 944 945
    Examples:
    
        .. code-block:: python

            import numpy as np
946
            from PIL import Image
947
            from paddle.vision.transforms import RandomCrop
L
LielinJiang 已提交
948 949 950

            transform = RandomCrop(224)

951
            fake_img = Image.fromarray((np.random.rand(324, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
952 953

            fake_img = transform(fake_img)
954
            print(fake_img.size)
L
LielinJiang 已提交
955 956
    """

957 958 959 960 961 962 963 964
    def __init__(self,
                 size,
                 padding=None,
                 pad_if_needed=False,
                 fill=0,
                 padding_mode='constant',
                 keys=None):
        super(RandomCrop, self).__init__(keys)
L
LielinJiang 已提交
965 966 967 968 969 970
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
971 972
        self.fill = fill
        self.padding_mode = padding_mode
L
LielinJiang 已提交
973

974
    def _get_param(self, img, output_size):
L
LielinJiang 已提交
975 976 977
        """Get parameters for ``crop`` for a random crop.

        Args:
978
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
979 980 981 982 983
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
984
        w, h = _get_image_size(img)
L
LielinJiang 已提交
985 986 987 988
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

989 990
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
L
LielinJiang 已提交
991 992
        return i, j, th, tw

993
    def _apply_image(self, img):
L
LielinJiang 已提交
994 995
        """
        Args:
996
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
997

998 999
        Returns:
            PIL Image: Cropped image.
L
LielinJiang 已提交
1000
        """
1001 1002 1003 1004
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)

        w, h = _get_image_size(img)
L
LielinJiang 已提交
1005 1006

        # pad the width if needed
1007 1008 1009
        if self.pad_if_needed and w < self.size[1]:
            img = F.pad(img, (self.size[1] - w, 0), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1010
        # pad the height if needed
1011 1012 1013
        if self.pad_if_needed and h < self.size[0]:
            img = F.pad(img, (0, self.size[0] - h), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1014

1015
        i, j, h, w = self._get_param(img, self.size)
L
LielinJiang 已提交
1016

1017
        return F.crop(img, i, j, h, w)
L
LielinJiang 已提交
1018 1019


1020
class Pad(BaseTransform):
L
LielinJiang 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    """Pads the given CV Image on all sides with the given "pad" value.

    Args:
        padding (int|list|tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
        fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
            ``constant`` means pads with a constant value, this value is specified with fill. 
            ``edge`` means pads with the last value at the edge of the image. 
            ``reflect`` means pads with reflection of image (without repeating the last value on the edge) 
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode 
            will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
            ``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode 
            will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
1041 1042
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
1043 1044 1045 1046 1047
    Examples:
    
        .. code-block:: python

            import numpy as np
1048
            from PIL import Image
1049
            from paddle.vision.transforms import Pad
L
LielinJiang 已提交
1050 1051 1052

            transform = Pad(2)

1053
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1054 1055

            fake_img = transform(fake_img)
1056
            print(fake_img.size)
L
LielinJiang 已提交
1057 1058
    """

1059
    def __init__(self, padding, fill=0, padding_mode='constant', keys=None):
L
LielinJiang 已提交
1060 1061 1062
        assert isinstance(padding, (numbers.Number, list, tuple))
        assert isinstance(fill, (numbers.Number, str, list, tuple))
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
1063 1064 1065 1066 1067 1068 1069

        if isinstance(padding, list):
            padding = tuple(padding)
        if isinstance(fill, list):
            fill = tuple(fill)

        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
L
LielinJiang 已提交
1070 1071 1072 1073
            raise ValueError(
                "Padding must be an int or a 2, or 4 element tuple, not a " +
                "{} element tuple".format(len(padding)))

1074
        super(Pad, self).__init__(keys)
L
LielinJiang 已提交
1075 1076 1077 1078
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

1079
    def _apply_image(self, img):
L
LielinJiang 已提交
1080 1081
        """
        Args:
1082 1083
            img (PIL Image): Image to be padded.

L
LielinJiang 已提交
1084
        Returns:
1085
            PIL Image: Padded image.
L
LielinJiang 已提交
1086 1087 1088 1089
        """
        return F.pad(img, self.padding, self.fill, self.padding_mode)


1090
class RandomRotation(BaseTransform):
L
LielinJiang 已提交
1091 1092 1093 1094 1095 1096
    """Rotates the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) clockwise order.
1097
        interpolation (str, optional): Interpolation method. If omitted, or if the 
1098 1099 1100 1101 1102 1103 1104 1105 1106
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST 
            according the backend. when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
L
LielinJiang 已提交
1107 1108 1109 1110 1111 1112 1113
        expand (bool|optional): Optional expansion flag. Default: False.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple|optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
1114 1115
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
1116 1117 1118 1119 1120
    Examples:
    
        .. code-block:: python

            import numpy as np
1121 1122
            from PIL import Image
            from paddle.vision.transforms import RandomRotation
L
LielinJiang 已提交
1123

1124
            transform = RandomRotation(90)
L
LielinJiang 已提交
1125

1126
            fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1127 1128

            fake_img = transform(fake_img)
1129
            print(fake_img.size)
L
LielinJiang 已提交
1130 1131
    """

1132 1133
    def __init__(self,
                 degrees,
1134
                 interpolation='nearest',
1135 1136 1137 1138
                 expand=False,
                 center=None,
                 fill=0,
                 keys=None):
L
LielinJiang 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError(
                    "If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError(
                    "If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

1150
        super(RandomRotation, self).__init__(keys)
1151
        self.interpolation = interpolation
L
LielinJiang 已提交
1152 1153
        self.expand = expand
        self.center = center
1154
        self.fill = fill
L
LielinJiang 已提交
1155

1156
    def _get_param(self, degrees):
L
LielinJiang 已提交
1157 1158 1159 1160
        angle = random.uniform(degrees[0], degrees[1])

        return angle

1161
    def _apply_image(self, img):
L
LielinJiang 已提交
1162
        """
1163 1164 1165
        Args:
            img (PIL.Image|np.array): Image to be rotated.

L
LielinJiang 已提交
1166
        Returns:
1167
            PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
1168 1169
        """

1170
        angle = self._get_param(self.degrees)
L
LielinJiang 已提交
1171

1172 1173
        return F.rotate(img, angle, self.interpolation, self.expand,
                        self.center, self.fill)
L
LielinJiang 已提交
1174 1175


1176
class Grayscale(BaseTransform):
L
LielinJiang 已提交
1177 1178 1179
    """Converts image to grayscale.

    Args:
1180 1181 1182
        num_output_channels (int): (1 or 3) number of channels desired for output image
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    Returns:
        CV Image: Grayscale version of the input.
        - If output_channels == 1 : returned image is single channel
        - If output_channels == 3 : returned image is 3 channel with r == g == b

    Examples:
    
        .. code-block:: python

            import numpy as np
1193
            from PIL import Image
1194
            from paddle.vision.transforms import Grayscale
L
LielinJiang 已提交
1195 1196 1197

            transform = Grayscale()

1198
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1199 1200

            fake_img = transform(fake_img)
1201
            print(np.array(fake_img).shape)
L
LielinJiang 已提交
1202 1203
    """

1204 1205 1206
    def __init__(self, num_output_channels=1, keys=None):
        super(Grayscale, self).__init__(keys)
        self.num_output_channels = num_output_channels
L
LielinJiang 已提交
1207

1208
    def _apply_image(self, img):
L
LielinJiang 已提交
1209 1210
        """
        Args:
1211 1212
            img (PIL Image): Image to be converted to grayscale.

L
LielinJiang 已提交
1213
        Returns:
1214
            PIL Image: Randomly grayscaled image.
L
LielinJiang 已提交
1215
        """
1216
        return F.to_grayscale(img, self.num_output_channels)