op_handle_base.h 4.2 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <map>
X
Xin Pan 已提交
17
#include <string>
Z
Zeng Jinle 已提交
18 19
#include <unordered_map>
#include <unordered_set>
X
Xin Pan 已提交
20
#include <vector>
21

Y
Yu Yang 已提交
22
#include "paddle/fluid/framework/details/var_handle.h"
X
Xin Pan 已提交
23
#include "paddle/fluid/framework/ir/node.h"
Y
Yu Yang 已提交
24
#include "paddle/fluid/platform/device_context.h"
Y
Yu Yang 已提交
25 26
#include "paddle/fluid/platform/macros.h"

Y
Yu Yang 已提交
27 28 29
namespace paddle {
namespace framework {

30 31 32
class Scope;

namespace details {
33

X
clean  
Xin Pan 已提交
34 35
// Wraps ir::Node and provide helper utilities.
// It's responsible for populating necessary fields of ir::Node.
Y
Yu Yang 已提交
36 37
class OpHandleBase {
 public:
Z
Zeng Jinle 已提交
38 39 40 41 42 43 44
  /**
   * NOTE(zjl): Some op should have higher priority than others.
   * The higher priority op would run first without switching
   * threads in Executor.
   */
  enum Priority { kHighest = 0, kNormal = 1 };

X
Xin Pan 已提交
45
  // Owned by `node`. No need to be deleted explicitly.
X
clean1  
Xin Pan 已提交
46 47 48
  explicit OpHandleBase(ir::Node *node) : node_(node) {
    node_->WrappedBy(this);
  }
Y
Yu Yang 已提交
49

Z
Zeng Jinle 已提交
50
  virtual ~OpHandleBase() PADDLE_MAY_THROW;
X
Xin Pan 已提交
51

Y
Yu Yang 已提交
52 53
  std::string DebugString() const;

Z
Zeng Jinle 已提交
54 55
  virtual Priority GetPriority() const { return kNormal; }

56 57 58 59
  virtual bool GetSkipRunning() const { return skip_running_; }

  virtual void SetSkipRunning(bool skip_runing) { skip_running_ = skip_runing; }

Y
Yu Yang 已提交
60 61
  virtual std::string Name() const = 0;

62
  void Run(bool use_cuda);
Y
Yu Yang 已提交
63

C
chengduoZH 已提交
64
  virtual void RecordWaitEventOnCtx(platform::DeviceContext *waited_ctx);
Y
Yu Yang 已提交
65

Y
Yu Yang 已提交
66 67 68 69
  void AddInput(VarHandleBase *in);

  void AddOutput(VarHandleBase *out);

70 71 72
  // This method adds the wait events of all the input on all the device
  // context.
  // NODE: This Wait is asynchronous operation.
C
chengduoZH 已提交
73 74
  virtual void WaitInputVarGenerated();

75 76 77
  // This method adds the wait events of all the input on the specified device
  // context.
  // NODE: This Wait is asynchronous operation.
C
chengduoZH 已提交
78 79 80 81
  virtual void WaitInputVarGenerated(const platform::Place &place);

  virtual bool NeedWait(VarHandleBase *in_var);

X
Polish  
Xin Pan 已提交
82 83 84
  // If the Op involves data transfer of multiple devices that
  // will likely block other computations.
  virtual bool IsMultiDeviceTransfer() { return false; }
X
Xin Pan 已提交
85

X
Xin Pan 已提交
86
  const platform::DeviceContext *DeviceContext(platform::Place place) {
S
sneaxiy 已提交
87 88
    auto it = dev_ctxes_.find(place);
    return it != dev_ctxes_.end() ? it->second : nullptr;
X
Xin Pan 已提交
89
  }
Y
Yancey1989 已提交
90 91 92
  const std::map<platform::Place, platform::DeviceContext *> &DeviceContext() {
    return dev_ctxes_;
  }
X
Xin Pan 已提交
93 94 95 96 97 98 99

  void SetDeviceContext(platform::Place place, platform::DeviceContext *ctx_) {
    dev_ctxes_[place] = ctx_;
  }

  const std::vector<VarHandleBase *> &Inputs() const { return inputs_; }

100 101 102 103 104 105 106 107
  size_t NoDupInputSize() const {
    std::unordered_set<VarHandleBase *> res;
    for (auto *var : inputs_) {
      res.emplace(var);
    }
    return res.size();
  }

Y
Stash  
yuyang18 已提交
108 109
  size_t NotReadyInputSize() const;

X
Xin Pan 已提交
110 111
  const std::vector<VarHandleBase *> &Outputs() const { return outputs_; }

C
chengduoZH 已提交
112 113
  size_t NoDummyInputSize() const;

X
Xin Pan 已提交
114 115
  ir::Node *Node() { return node_; }

116 117
  const ir::Node *Node() const { return node_; }

118 119 120
  void SetLocalExecScopes(
      const std::unordered_map<Scope *, Scope *> &scope_map);

Y
Yu Yang 已提交
121
 protected:
122 123
  virtual std::vector<Scope *> GetLocalScopes() = 0;

Y
Yu Yang 已提交
124 125
  void RunAndRecordEvent(const std::function<void()> &callback);

126 127 128
  void RunAndRecordEvent(platform::Place p,
                         const std::function<void()> &callback);

Y
Yu Yang 已提交
129
  virtual void RunImpl() = 0;
X
Xin Pan 已提交
130

131 132
  virtual void InitCUDA();

X
Xin Pan 已提交
133
  ir::Node *node_;
X
Xin Pan 已提交
134 135
  std::vector<VarHandleBase *> inputs_;
  std::vector<VarHandleBase *> outputs_;
136
  std::map<platform::Place, platform::DeviceContext *> dev_ctxes_;
X
Xin Pan 已提交
137

138
  std::vector<Scope *> local_exec_scopes_;
139
  bool skip_running_ = false;
140

X
Xin Pan 已提交
141 142 143 144 145
#ifdef PADDLE_WITH_CUDA
  std::unordered_map<int, cudaEvent_t> events_;
#endif

  DISABLE_COPY_AND_ASSIGN(OpHandleBase);
Y
Yu Yang 已提交
146 147 148 149 150
};

}  // namespace details
}  // namespace framework
}  // namespace paddle