pool2d_op.cc 11.3 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h"
N
nhzlx 已提交
17

W
wanghuancoder 已提交
18 19 20
namespace paddle {
namespace framework {
class Scope;
21

W
wanghuancoder 已提交
22 23 24 25 26 27
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

N
nhzlx 已提交
28 29 30 31
namespace paddle {
namespace inference {
namespace tensorrt {

32 33 34 35
inline void DealCeilMode(const nvinfer1::Dims &input_shape,
                         std::vector<int> ksize, std::vector<int> strides,
                         std::vector<int> paddings, nvinfer1::DimsHW *pre_pad,
                         nvinfer1::DimsHW *post_pad, int input_dims) {
N
nhzlx 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  int input_height = input_shape.d[input_dims - 2];
  int input_width = input_shape.d[input_dims - 1];
  int floor_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
  int ceil_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
          strides[0] +
      1;

  int floor_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
  int ceil_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1] + strides[1] - 1) / strides[1] +
      1;
  if (floor_h_output_size != ceil_h_output_size) {
    post_pad->h() = strides[0] - 1;
  }

  if (floor_w_output_size != ceil_w_output_size) {
    post_pad->w() = strides[1] - 1;
  }
}

N
nhzlx 已提交
59 60 61 62 63
/*
 * Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights.
 */
class Pool2dOpConverter : public OpConverter {
 public:
N
nhzlx 已提交
64 65
  void operator()(const framework::proto::OpDesc &op,
                  const framework::Scope &scope, bool test_mode) override {
M
minqiyang 已提交
66
    VLOG(4)
N
nhzlx 已提交
67 68
        << "convert a fluid pool2d op to tensorrt pool2d layer without bias";
    framework::OpDesc op_desc(op, nullptr);
N
nhzlx 已提交
69 70 71 72
    auto *input1 = engine_->GetITensor(op_desc.Input("X")[0]);
    nvinfer1::Dims input_shape = input1->getDimensions();
    int input_dims = input_shape.nbDims;

73 74
    bool global_pooling =
        BOOST_GET_CONST(bool, op_desc.GetAttr("global_pooling"));
N
nhzlx 已提交
75
    std::string pool_type =
76
        BOOST_GET_CONST(std::string, op_desc.GetAttr("pooling_type"));
N
nhzlx 已提交
77
    std::vector<int> ksize =
78
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("ksize"));
N
nhzlx 已提交
79
    std::vector<int> strides =
80
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));
N
nhzlx 已提交
81
    std::vector<int> paddings =
82
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("paddings"));
83 84 85
    bool exclusive = op_desc.HasAttr("exclusive")
                         ? BOOST_GET_CONST(bool, op_desc.GetAttr("exclusive"))
                         : true;
86
    bool ceil_mode = BOOST_GET_CONST(bool, op_desc.GetAttr("ceil_mode"));
87 88
    bool adaptive = false;
    if (op_desc.HasAttr("adaptive"))
89
      adaptive = BOOST_GET_CONST(bool, op_desc.GetAttr("adaptive"));
90 91 92 93
    std::string padding_algorithm = "EXPLICIT";
    if (op_desc.HasAttr("padding_algorithm"))
      padding_algorithm =
          BOOST_GET_CONST(std::string, op_desc.GetAttr("padding_algorithm"));
N
nhzlx 已提交
94

N
nhzlx 已提交
95
    nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX;
96 97
    nvinfer1::ReduceOperation reduce_operation =
        nvinfer1::ReduceOperation::kMAX;
98 99
    plugin::PoolPlugin::PoolType plugin_pool_type =
        plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
100
    if (pool_type == "max") {
N
nhzlx 已提交
101
      nv_pool_type = nvinfer1::PoolingType::kMAX;
102
      reduce_operation = nvinfer1::ReduceOperation::kMAX;
103
      plugin_pool_type = plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
104
    } else if (pool_type == "avg") {
N
nhzlx 已提交
105
      nv_pool_type = nvinfer1::PoolingType::kAVERAGE;
106
      reduce_operation = nvinfer1::ReduceOperation::kAVG;
107
      plugin_pool_type = plugin::PoolPlugin::PoolType::avg;
N
nhzlx 已提交
108 109
    }

N
nhzlx 已提交
110 111 112 113 114
    nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
    nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
    nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

    nvinfer1::ILayer *layer = nullptr;
W
wenbin 已提交
115 116 117 118 119 120 121 122 123 124 125 126
    nvinfer1::DimsHW g_pre_pad(0, 0);
    nvinfer1::DimsHW g_post_pad(0, 0);
    // paddle Non ceil_mode : Output size = (input size - filter size + 2 *
    // padding) / stride (stride size) + 1
    // tensorrt EXPLICIT_ROUND_DOWN: O = floor((M - DK) / S) + 1
    // so if M - DK < 0 we need extra padding
    if (input_shape.d[input_dims - 2] - ksize[0] + 2 * paddings[0] < 0) {
      g_post_pad.h() = strides[0] - 1;
    }
    if (input_shape.d[input_dims - 1] - ksize[1] + 2 * paddings[1] < 0) {
      g_post_pad.w() = strides[1] - 1;
    }
N
nhzlx 已提交
127

128 129 130
    if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
      CHECK(op_desc.HasAttr("X_scale"));
131
      float input_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
132 133 134 135
      engine_->SetTensorDynamicRange(input1, input_scale);
#endif
    }

136
    if (engine_->with_dynamic_shape()) {
137
      if (!adaptive && !global_pooling && !ceil_mode) {
W
wenbin 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151
        // input_shape.d < 0 means we can't get shape info here.
        // we may suffer from issue if shape is not met finally.
        if ((padding_algorithm != "SAME") &&
            ((g_post_pad.w() > 0 && input_shape.d[input_dims - 2] > 0) ||
             (g_post_pad.h() > 0 && input_shape.d[input_dims - 1] > 0))) {
          auto *pad_layer = TRT_ENGINE_ADD_LAYER(engine_, Padding, *input1,
                                                 g_pre_pad, g_post_pad);
          PADDLE_ENFORCE_NOT_NULL(
              pad_layer, platform::errors::Fatal(
                             "Pad layer in poolOp converter could not be "
                             "created. The pointer to pad layer is `NULL`."));
          input1 = pad_layer->getOutput(0);
        }

152 153 154 155
        auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                                nv_pool_type, nv_ksize);
        pool_layer->setStride(nv_strides);
        pool_layer->setPadding(nv_paddings);
156
        pool_layer->setAverageCountExcludesPadding(exclusive);
157 158 159
        if (padding_algorithm == "SAME") {
          pool_layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
        }
160
        layer = pool_layer;
161 162 163 164
      } else if (global_pooling) {
        auto *reduce_layer = TRT_ENGINE_ADD_LAYER(engine_, Reduce, *input1,
                                                  reduce_operation, 12, true);
        layer = reduce_layer;
165 166 167 168 169
      } else {
#if IS_TRT_VERSION_GE(6000)
        plugin::PoolPluginDynamic *plugin =
            new plugin::PoolPluginDynamic(ceil_mode, pool_type, adaptive, ksize,
                                          strides, paddings, global_pooling);
170
        layer = engine_->AddDynamicPlugin(&input1, 1, plugin);
171 172 173 174 175 176 177 178 179 180 181 182
#endif
      }
      auto output_name = op_desc.Output("Out")[0];
      layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
      if (test_mode) {
        engine_->DeclareOutput(output_name);
      }
      return;
    }

N
nhzlx 已提交
183 184 185
    if (global_pooling == true) {
      nv_ksize.d[0] = input_shape.d[input_dims - 2];
      nv_ksize.d[1] = input_shape.d[input_dims - 1];
W
wenbin 已提交
186 187
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                              nv_pool_type, nv_ksize);
188
      PADDLE_ENFORCE_NOT_NULL(
189 190
          pool_layer, platform::errors::Fatal(
                          "trt pool layer in converter could not be created."));
N
nhzlx 已提交
191
      auto output_name = op_desc.Output("Out")[0];
192 193
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
194 195 196
      if (padding_algorithm == "SAME") {
        pool_layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
      }
197 198 199 200 201
      pool_layer->setAverageCountExcludesPadding(exclusive);
      pool_layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      pool_layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, pool_layer->getOutput(0));
      layer = pool_layer;
N
nhzlx 已提交
202
      if (test_mode) {
N
nhzlx 已提交
203
        engine_->DeclareOutput(output_name);
204
      }
N
nhzlx 已提交
205 206
      return;
    }
207

208
    if (!adaptive) {
N
nhzlx 已提交
209
      if (ceil_mode) {
W
wenbin 已提交
210 211
        nvinfer1::DimsHW pre_pad(0, 0);
        nvinfer1::DimsHW post_pad(0, 0);
N
nhzlx 已提交
212 213 214
        // If ceil mode is true, we will pad the appropriate size to the input.
        DealCeilMode(input_shape, ksize, strides, paddings, &pre_pad, &post_pad,
                     input_dims);
W
wenbin 已提交
215 216 217
        auto *pad_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Padding, *input1, pre_pad, post_pad);

N
nhzlx 已提交
218
        PADDLE_ENFORCE_NOT_NULL(
219 220 221
            pad_layer, platform::errors::Fatal(
                           "Pad layer in poolOp converter could not be "
                           "created. The pointer to pad layer is `NULL`."));
N
nhzlx 已提交
222 223
        input1 = pad_layer->getOutput(0);
      }
W
wenbin 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
#if IS_TRT_VERSION_GE(8000)
      // Exclude padding pixels from the average mean is not supported well by
      // TRT
      // so enable padding for trt8.0 above.
      if ((g_post_pad.w() > 0 || g_post_pad.h() > 0) &&
          (padding_algorithm != "SAME") && !ceil_mode) {
        auto *pad_layer = TRT_ENGINE_ADD_LAYER(engine_, Padding, *input1,
                                               g_pre_pad, g_post_pad);
        PADDLE_ENFORCE_NOT_NULL(
            pad_layer, platform::errors::Fatal(
                           "Pad layer in poolOp converter could not be "
                           "created. The pointer to pad layer is `NULL`."));
        input1 = pad_layer->getOutput(0);
      }
#endif
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                              nv_pool_type, nv_ksize);
241 242 243
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer, platform::errors::Fatal(
                          "trt pool layer in converter could not be created."));
N
nhzlx 已提交
244 245
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
246 247 248
      if (padding_algorithm == "SAME") {
        pool_layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
      }
249
      pool_layer->setAverageCountExcludesPadding(exclusive);
N
nhzlx 已提交
250 251 252 253 254 255 256 257
      layer = pool_layer;
    } else {
      // Average pooling needs to exclude the padding pixels from the average
      // mean.
      // It is not supported well by TRT, we use a plugin here.
      std::vector<int> input_shape_v;
      for (int i = 0; i < input_dims; i++) {
        input_shape_v.push_back(input_shape.d[i]);
258
      }
259 260 261 262
      plugin::PoolPlugin *plugin =
          new plugin::PoolPlugin(ceil_mode, plugin_pool_type, adaptive, ksize,
                                 strides, paddings, input_shape_v);
      auto *pool_layer = engine_->AddPlugin(&input1, 1, plugin);
263 264 265 266
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer,
          platform::errors::Fatal(
              "trt pool plugin layer in converter could not be created."));
267
      layer = pool_layer;
268
    }
N
nhzlx 已提交
269
    auto output_name = op_desc.Output("Out")[0];
270
    RreplenishLayerAndOutput(layer, "pool2d", {output_name}, test_mode);
N
nhzlx 已提交
271 272 273 274 275 276 277 278 279
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

USE_OP(pool2d);
REGISTER_TRT_OP_CONVERTER(pool2d, Pool2dOpConverter);