pool2d_op.cc 2.7 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights.
 */
class Pool2dOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    VLOG(4)
        << "convert a fluid pool2d op to tensorrt pool2d layer without bias";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
    auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]);
    std::string pool_type =
        boost::get<std::string>(op_desc.GetAttr("pooling_type"));
    std::vector<int> ksize =
        boost::get<std::vector<int>>(op_desc.GetAttr("ksize"));
    std::vector<int> strides =
        boost::get<std::vector<int>>(op_desc.GetAttr("strides"));
    std::vector<int> paddings =
        boost::get<std::vector<int>>(op_desc.GetAttr("paddings"));

    const nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
    const nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
    const nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

46 47
    PADDLE_ENFORCE_EQ(input1->getDimensions().nbDims, 3UL);

N
nhzlx 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    nvinfer1::PoolingType pool_t = nvinfer1::PoolingType::kMAX;
    if (pool_type == "max") {
      pool_t = nvinfer1::PoolingType::kMAX;
    } else if (pool_type == "avg") {
      pool_t = nvinfer1::PoolingType::kAVERAGE;
    } else {
      PADDLE_THROW("TensorRT unsupported pooling type!");
    }

    auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling,
                                       *const_cast<nvinfer1::ITensor*>(input1),
                                       pool_t, nv_ksize);
    PADDLE_ENFORCE_NOT_NULL(layer, "pool layer could not be created.");
    layer->setStride(nv_strides);
    layer->setPadding(nv_paddings);

    auto output_name = op_desc.Output("Out")[0];
    engine_->SetITensor(output_name, layer->getOutput(0));
    if (test_mode) {
      engine_->DeclareOutput(output_name);
    }
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

USE_OP(pool2d);
REGISTER_TRT_OP_CONVERTER(pool2d, Pool2dOpConverter);