ternary.h 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/phi/core/meta_tensor.h"

namespace phi {

// Common InferMeta Functions for ternary operators, The format like:
//
//   1. void [FunctionDesc|OpName]InferMeta(const MetaTensor& x,
//                                          const MetaTensor& y,
//                                          const MetaTensor& z,
//                                          ...,
//                                          MetaTensor* out) {}
//
// NOTE: The name "InferShape" may be not appropriate. "InferMeta" may be good.
//   Because functions in this file not only can infer shape, but also need
//   infer lod or other useful data.
32
//
33 34
// The InferMeta Functions in this file are arranged in alphabetic order.

35 36 37 38 39 40 41
void AccuracyInferMeta(const MetaTensor& out,
                       const MetaTensor& indice,
                       const MetaTensor& label,
                       MetaTensor* accuracy,
                       MetaTensor* correct,
                       MetaTensor* total,
                       MetaConfig config = MetaConfig());
42 43 44 45 46 47 48 49

void AddmmInferMeta(const MetaTensor& input,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    float alpha,
                    float beta,
                    MetaTensor* out);

Z
zyfncg 已提交
50 51 52 53 54
void ArangeInferMeta(const MetaTensor& start,
                     const MetaTensor& end,
                     const MetaTensor& step,
                     MetaTensor* out);

L
lyq 已提交
55 56 57 58 59 60 61 62 63 64
void BoxCoderInferMeta(const MetaTensor& prior_box,
                       const MetaTensor& prior_box_var,
                       const MetaTensor& target_box,
                       const std::string& code_type,
                       bool box_normalized,
                       int axis,
                       const std::vector<float>& variance,
                       MetaTensor* output_box,
                       MetaConfig config = MetaConfig());

65
void InstanceNormInferMeta(const MetaTensor& x,
66 67
                           const MetaTensor& scale,
                           const MetaTensor& bias,
68 69 70 71 72 73
                           float epsilon,
                           MetaTensor* y,
                           MetaTensor* saved_mean,
                           MetaTensor* saved_variance,
                           MetaConfig config = MetaConfig());

74 75 76 77
void GraphSendRecvInferMeta(const MetaTensor& x,
                            const MetaTensor& src_index,
                            const MetaTensor& dst_index,
                            const std::string& pool_type,
78
                            int64_t out_size,
79 80
                            MetaTensor* out,
                            MetaTensor* dst_count);
81

82 83 84 85 86 87 88 89 90 91
void GroupNormInferMeta(const MetaTensor& x,
                        const MetaTensor& scale,
                        const MetaTensor& bias,
                        float epsilon,
                        int groups,
                        const std::string& data_layout,
                        MetaTensor* y,
                        MetaTensor* mean,
                        MetaTensor* variance);

H
hong 已提交
92
void LayerNormInferMeta(const MetaTensor& x,
93 94
                        const MetaTensor& scale,
                        const MetaTensor& bias,
H
hong 已提交
95 96 97 98 99 100 101 102 103
                        float epsilon,
                        int begin_norm_axis,
                        bool is_test,
                        MetaTensor* out,
                        MetaTensor* mean,
                        MetaTensor* variance,
                        MetaConfig config = MetaConfig());

void LayerNormGradInferMeta(const MetaTensor& x,
104 105
                            const MetaTensor& y,
                            const MetaTensor& z,
H
hong 已提交
106 107 108 109
                            MetaTensor* dx,
                            MetaTensor* dy,
                            MetaTensor* dz);

110 111 112 113 114
void LerpInferMeta(const MetaTensor& x,
                   const MetaTensor& y,
                   const MetaTensor& weight,
                   MetaTensor* out);

115 116 117 118 119
void LinspaceRawInferMeta(const MetaTensor& start,
                          const MetaTensor& stop,
                          const MetaTensor& number,
                          MetaTensor* out);

120 121 122
void LinspaceInferMeta(const MetaTensor& start,
                       const MetaTensor& stop,
                       const MetaTensor& number,
123
                       DataType dtype,
124
                       MetaTensor* out);
125

Z
zhiboniu 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
void MultiClassNMSInferMeta(const MetaTensor& bboxes,
                            const MetaTensor& scores,
                            const MetaTensor& rois_num,
                            float score_threshold,
                            int nms_top_k,
                            int keep_top_k,
                            float nms_threshold,
                            bool normalized,
                            float nms_eta,
                            int background_label,
                            MetaTensor* out,
                            MetaTensor* index,
                            MetaTensor* nms_rois_num,
                            MetaConfig config = MetaConfig());

141 142
void NllLossRawInferMeta(const MetaTensor& input,
                         const MetaTensor& label,
143
                         const MetaTensor& weight,
144 145 146 147 148 149
                         int64_t ignore_index,
                         const std::string& reduction,
                         MetaTensor* out,
                         MetaTensor* total_weight,
                         MetaConfig config = MetaConfig());

150 151 152 153 154 155 156
void PutAlongAxisInferMeta(const MetaTensor& x,
                           const MetaTensor& index,
                           const MetaTensor& value,
                           int axis,
                           const std::string& reduce,
                           MetaTensor* out);

157 158
void RoiAlignInferMeta(const MetaTensor& x,
                       const MetaTensor& boxes,
159
                       const MetaTensor& boxes_num,
160 161 162 163 164 165 166 167
                       int pooled_height,
                       int pooled_width,
                       float spatial_scale,
                       int sampling_ratio,
                       bool aligned,
                       MetaTensor* out,
                       MetaConfig config = MetaConfig());

168 169
void RoiPoolInferMeta(const MetaTensor& x,
                      const MetaTensor& boxes,
170
                      const MetaTensor& boxes_num,
171 172 173 174 175 176
                      int pooled_height,
                      int pooled_width,
                      float spatial_scale,
                      MetaTensor* out,
                      MetaTensor* arg_max);

177 178 179 180 181 182
void ScatterInferMeta(const MetaTensor& x,
                      const MetaTensor& index,
                      const MetaTensor& updates,
                      bool overwrite,
                      MetaTensor* out);

183 184 185 186 187
void ScatterNdAddInferMeta(const MetaTensor& x,
                           const MetaTensor& index,
                           const MetaTensor& updates,
                           MetaTensor* out);

188 189 190 191 192 193 194 195 196
void SpectralNormInferMeta(const MetaTensor& weight,
                           const MetaTensor& u,
                           const MetaTensor& v,
                           int dim,
                           int power_iters,
                           float eps,
                           MetaTensor* out,
                           MetaConfig config = MetaConfig());

197 198 199 200 201 202 203 204
void ViterbiDecodeInferMeta(const MetaTensor& input,
                            const MetaTensor& transition,
                            const MetaTensor& length,
                            bool include_bos_eos_tag,
                            MetaTensor* scores,
                            MetaTensor* path,
                            MetaConfig config = MetaConfig());

205
}  // namespace phi