ternary.h 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/phi/core/meta_tensor.h"

namespace phi {

// Common InferMeta Functions for ternary operators, The format like:
//
//   1. void [FunctionDesc|OpName]InferMeta(const MetaTensor& x,
//                                          const MetaTensor& y,
//                                          const MetaTensor& z,
//                                          ...,
//                                          MetaTensor* out) {}
//
// NOTE: The name "InferShape" may be not appropriate. "InferMeta" may be good.
//   Because functions in this file not only can infer shape, but also need
//   infer lod or other useful data.
32
//
33 34
// The InferMeta Functions in this file are arranged in alphabetic order.

35 36 37 38 39 40 41
void AccuracyInferMeta(const MetaTensor& out,
                       const MetaTensor& indice,
                       const MetaTensor& label,
                       MetaTensor* accuracy,
                       MetaTensor* correct,
                       MetaTensor* total,
                       MetaConfig config = MetaConfig());
42 43 44 45 46 47 48 49

void AddmmInferMeta(const MetaTensor& input,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    float alpha,
                    float beta,
                    MetaTensor* out);

Z
zyfncg 已提交
50 51 52 53 54
void ArangeInferMeta(const MetaTensor& start,
                     const MetaTensor& end,
                     const MetaTensor& step,
                     MetaTensor* out);

55 56 57 58
void GraphSendRecvInferMeta(const MetaTensor& x,
                            const MetaTensor& src_index,
                            const MetaTensor& dst_index,
                            const std::string& pool_type,
59
                            int64_t out_size,
60 61
                            MetaTensor* out,
                            MetaTensor* dst_count);
62

H
hong 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
void LayerNormInferMeta(const MetaTensor& x,
                        paddle::optional<const MetaTensor&> scale,
                        paddle::optional<const MetaTensor&> bias,
                        float epsilon,
                        int begin_norm_axis,
                        bool is_test,
                        MetaTensor* out,
                        MetaTensor* mean,
                        MetaTensor* variance,
                        MetaConfig config = MetaConfig());

void LayerNormGradInferMeta(const MetaTensor& x,
                            paddle::optional<const MetaTensor&> y,
                            paddle::optional<const MetaTensor&> z,
                            MetaTensor* dx,
                            MetaTensor* dy,
                            MetaTensor* dz);

81 82 83 84 85
void LerpInferMeta(const MetaTensor& x,
                   const MetaTensor& y,
                   const MetaTensor& weight,
                   MetaTensor* out);

86 87 88 89 90
void LinspaceRawInferMeta(const MetaTensor& start,
                          const MetaTensor& stop,
                          const MetaTensor& number,
                          MetaTensor* out);

91 92 93
void LinspaceInferMeta(const MetaTensor& start,
                       const MetaTensor& stop,
                       const MetaTensor& number,
94
                       DataType dtype,
95
                       MetaTensor* out);
96

97 98 99 100 101 102 103 104 105
void NllLossRawInferMeta(const MetaTensor& input,
                         const MetaTensor& label,
                         paddle::optional<const MetaTensor&> weight,
                         int64_t ignore_index,
                         const std::string& reduction,
                         MetaTensor* out,
                         MetaTensor* total_weight,
                         MetaConfig config = MetaConfig());

106 107 108 109 110 111 112
void PutAlongAxisInferMeta(const MetaTensor& x,
                           const MetaTensor& index,
                           const MetaTensor& value,
                           int axis,
                           const std::string& reduce,
                           MetaTensor* out);

113 114 115 116 117 118 119 120 121 122 123
void RoiAlignInferMeta(const MetaTensor& x,
                       const MetaTensor& boxes,
                       paddle::optional<const MetaTensor&> boxes_num,
                       int pooled_height,
                       int pooled_width,
                       float spatial_scale,
                       int sampling_ratio,
                       bool aligned,
                       MetaTensor* out,
                       MetaConfig config = MetaConfig());

124 125 126 127 128 129 130 131 132
void RoiPoolInferMeta(const MetaTensor& x,
                      const MetaTensor& boxes,
                      paddle::optional<const MetaTensor&> boxes_num,
                      int pooled_height,
                      int pooled_width,
                      float spatial_scale,
                      MetaTensor* out,
                      MetaTensor* arg_max);

133 134 135 136 137 138
void ScatterInferMeta(const MetaTensor& x,
                      const MetaTensor& index,
                      const MetaTensor& updates,
                      bool overwrite,
                      MetaTensor* out);

139 140 141 142 143
void ScatterNdAddInferMeta(const MetaTensor& x,
                           const MetaTensor& index,
                           const MetaTensor& updates,
                           MetaTensor* out);

144 145 146 147 148 149 150 151
void ViterbiDecodeInferMeta(const MetaTensor& input,
                            const MetaTensor& transition,
                            const MetaTensor& length,
                            bool include_bos_eos_tag,
                            MetaTensor* scores,
                            MetaTensor* path,
                            MetaConfig config = MetaConfig());

152
}  // namespace phi