gather_op_xpu.cc 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/gather_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/op_version_registry.h"
namespace paddle {
namespace operators {

template <typename T>
class GatherOpXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE_EQ(
        platform::is_xpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("This kernel only runs on XPU."));

    auto *x = ctx.Input<Tensor>("X");
    auto *index = ctx.Input<Tensor>("Index");
    auto *output = ctx.Output<Tensor>("Out");
    if (ctx.HasInput("Axis")) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Now, it doesn't support XPU with Axis."));
    }

    output->mutable_data<T>(ctx.GetPlace());
    if (x->numel() == 0) return;

    const auto index_dims = index->dims();
    if (index_dims.size() == 2) {
      PADDLE_ENFORCE_EQ(
          index_dims[1], 1,
          platform::errors::InvalidArgument(
              "The last dim of index should be 1 when it is 2D, but we get %d",
              index_dims[1]));
    } else {
      PADDLE_ENFORCE_EQ(
          index_dims.size(), 1,
          platform::errors::InvalidArgument(
              "The index should be 1D, when it is not 2D, but we get %d",
              index_dims.size()));
    }
58 59 60 61 62
    std::vector<int> xshape(x->dims().size());
    for (int i = 0; i < x->dims().size(); ++i) {
      xshape[i] = x->dims()[i];
    }

63
    auto &dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
64 65 66 67 68 69 70 71 72 73 74 75 76 77
    int r = XPU_SUCCESS;
    if (index->type() == framework::proto::VarType::INT32) {
      r = xpu::gather<T, int>(dev_ctx.x_context(), x->data<T>(),
                              index->data<int>(), output->data<T>(), xshape,
                              index->dims()[0], 0);
    } else {
      r = xpu::gather<T, int64_t>(dev_ctx.x_context(), x->data<T>(),
                                  index->data<int64_t>(), output->data<T>(),
                                  xshape, index->dims()[0], 0);
    }
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External(
                          "XPU gather kernel return wrong value[%d %s]", r,
                          XPUAPIErrorMsg[r]));
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
  }
};

template <typename T>
class GatherGradOpXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE_EQ(
        platform::is_xpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("This kernel only runs on XPU."));

    auto *index = ctx.Input<Tensor>("Index");
    auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto &dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();

    if (ctx.HasInput("Axis")) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Now, it doesn't support XPU with Axis."));
    }
    if (dout->numel() == 0) {
      return;
    }

102
    bool overwrite = ctx.Attr<bool>("overwrite");
103 104 105 106 107 108 109 110 111 112 113 114 115 116
    const auto index_dims = index->dims();
    if (index_dims.size() == 2) {
      PADDLE_ENFORCE_EQ(
          index_dims[1], 1,
          platform::errors::InvalidArgument(
              "The last dim of index should be 1 when it is 2D, but we get %d",
              index_dims[1]));
    } else {
      PADDLE_ENFORCE_EQ(
          index_dims.size(), 1,
          platform::errors::InvalidArgument(
              "The index should be 1D, when it is not 2D, but we get %d",
              index_dims.size()));
    }
117 118 119 120
    std::vector<int> xshape(dx->dims().size());
    for (int i = 0; i < dx->dims().size(); ++i) {
      xshape[i] = dx->dims()[i];
    }
121

122
    dx->mutable_data<T>(ctx.GetPlace());
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137
    int r = XPU_SUCCESS;
    if (index->type() == framework::proto::VarType::INT32) {
      r = xpu::gather_grad<T, int>(dev_ctx.x_context(), dout->data<T>(),
                                   index->data<int>(), dx->data<T>(), xshape,
                                   index->dims()[0], 0, overwrite);
    } else {
      r = xpu::gather_grad<T, int64_t>(dev_ctx.x_context(), dout->data<T>(),
                                       index->data<int64_t>(), dx->data<T>(),
                                       xshape, index->dims()[0], 0, overwrite);
    }
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External(
                          "XPU gather grad kernel return wrong value[%d %s]", r,
                          XPUAPIErrorMsg[r]));
138 139 140 141 142 143 144 145 146 147
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(gather, ops::GatherOpXPUKernel<float>);
REGISTER_OP_XPU_KERNEL(gather_grad, ops::GatherGradOpXPUKernel<float>);
#endif