未验证 提交 6d63cd2b 编写于 作者: S ShenLiang 提交者: GitHub

add gather_op xpu, test=kunlun (#27822)

* add gather_op xpu, test=develop, test=kunlun

* fix ut, test=develop, test=kunlun

* fix the ut,test=develop, test=kunlun
上级 e6a4d170
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/gather_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/op_version_registry.h"
namespace paddle {
namespace operators {
template <typename T>
class GatherOpXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
PADDLE_ENFORCE_EQ(
platform::is_xpu_place(ctx.GetPlace()), true,
platform::errors::PreconditionNotMet("This kernel only runs on XPU."));
auto *x = ctx.Input<Tensor>("X");
auto *index = ctx.Input<Tensor>("Index");
auto *output = ctx.Output<Tensor>("Out");
if (ctx.HasInput("Axis")) {
PADDLE_THROW(platform::errors::InvalidArgument(
"Now, it doesn't support XPU with Axis."));
}
output->mutable_data<T>(ctx.GetPlace());
if (x->numel() == 0) return;
// check index type is INT32
const auto &index_type = index->type();
bool index_type_match = index_type == framework::proto::VarType::INT32;
PADDLE_ENFORCE_EQ(
index_type_match, true,
platform::errors::InvalidArgument(
"XPU only support INT32, it holds %s, but desires to be %s",
paddle::framework::DataTypeToString(index_type),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT32)));
const auto index_dims = index->dims();
if (index_dims.size() == 2) {
PADDLE_ENFORCE_EQ(
index_dims[1], 1,
platform::errors::InvalidArgument(
"The last dim of index should be 1 when it is 2D, but we get %d",
index_dims[1]));
} else {
PADDLE_ENFORCE_EQ(
index_dims.size(), 1,
platform::errors::InvalidArgument(
"The index should be 1D, when it is not 2D, but we get %d",
index_dims.size()));
}
int slice_size = x->numel() / x->dims()[0];
auto &dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
int r =
xpu::gather<T>(dev_ctx.x_context(), x->data<T>(), index->data<int>(),
index->dims()[0], slice_size, output->data<T>());
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::External("XPU kernel error! error code=%d", r));
}
};
template <typename T>
class GatherGradOpXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
PADDLE_ENFORCE_EQ(
platform::is_xpu_place(ctx.GetPlace()), true,
platform::errors::PreconditionNotMet("This kernel only runs on XPU."));
auto *index = ctx.Input<Tensor>("Index");
auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto &dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
if (ctx.HasInput("Axis")) {
PADDLE_THROW(platform::errors::InvalidArgument(
"Now, it doesn't support XPU with Axis."));
}
dx->mutable_data<T>(ctx.GetPlace());
const int zero = 0;
int r_dx = xpu::memset(dev_ctx.x_context(), dx->data<T>(), zero,
dx->numel() * sizeof(T));
PADDLE_ENFORCE_EQ(
r_dx, xpu::Error_t::SUCCESS,
platform::errors::External("XPU kernel error! error code=%d", r_dx));
if (dout->numel() == 0) {
return;
}
bool overwrite = ctx.Attr<bool>("overwrite");
// check index type is INT32
const auto &index_type = index->type();
bool index_type_match = index_type == framework::proto::VarType::INT32;
PADDLE_ENFORCE_EQ(
index_type_match, true,
platform::errors::InvalidArgument(
"XPU only support INT32, it holds %s, but desires to be %s",
paddle::framework::DataTypeToString(index_type),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT32)));
const auto index_dims = index->dims();
if (index_dims.size() == 2) {
PADDLE_ENFORCE_EQ(
index_dims[1], 1,
platform::errors::InvalidArgument(
"The last dim of index should be 1 when it is 2D, but we get %d",
index_dims[1]));
} else {
PADDLE_ENFORCE_EQ(
index_dims.size(), 1,
platform::errors::InvalidArgument(
"The index should be 1D, when it is not 2D, but we get %d",
index_dims.size()));
}
int index_size = index_dims[0];
int slice_size = dout->numel() / dout->dims()[0];
int r = xpu::scatter<T>(dev_ctx.x_context(), dout->data<T>(),
index->data<int>(), index_size, slice_size,
dx->data<T>(), overwrite);
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::External("XPU kernel error! error code=%d", r));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(gather, ops::GatherOpXPUKernel<float>);
REGISTER_OP_XPU_KERNEL(gather_grad, ops::GatherGradOpXPUKernel<float>);
#endif
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
sys.path.append("..")
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
def gather_numpy(x, index, axis):
x_transpose = np.swapaxes(x, 0, axis)
tmp_gather = x_transpose[index, ...]
gather = np.swapaxes(tmp_gather, 0, axis)
return gather
class TestGatherOp(OpTest):
def setUp(self):
self.op_type = "gather"
self.config()
xnp = np.random.random(self.x_shape).astype(self.x_type)
self.inputs = {
'X': xnp,
'Index': np.array(self.index).astype(self.index_type)
}
self.outputs = {'Out': self.inputs["X"][self.inputs["Index"]]}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
def config(self):
"""
For multi-dimension input
"""
self.x_shape = (10, 20)
self.x_type = "float64"
self.index = [1, 3, 5]
self.index_type = "int32"
class TestXPUGatherOp(OpTest):
def setUp(self):
self.op_type = "gather"
self.dtype = np.float32
self.attrs = {'use_xpu': True}
self.config()
xnp = np.random.random(self.x_shape).astype(self.x_type)
self.inputs = {
'X': xnp,
'Index': np.array(self.index).astype(self.index_type)
}
self.outputs = {'Out': self.inputs["X"][self.inputs["Index"]]}
def test_check_output(self):
if self.dtype == np.float32 and paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place)
def test_check_grad(self):
if self.dtype == np.float32 and paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_grad_with_place(place, ['X'], 'Out')
def config(self):
"""
For multi-dimension input
"""
self.x_shape = (10, 20)
self.x_type = self.dtype
self.index = [1, 3, 5]
self.index_type = "int32"
class TestCase1(TestXPUGatherOp):
def config(self):
"""
For one dimension input
"""
self.x_shape = (100)
self.x_type = "float32"
self.index = [1, 3, 5]
self.index_type = "int32"
class TestCase2(TestXPUGatherOp):
def config(self):
"""
For int64_t index type
"""
self.x_shape = (100)
self.x_type = "float32"
self.index = [1, 3, 5]
self.index_type = "int32"
class TestCase3(TestXPUGatherOp):
def config(self):
"""
For other input type
"""
self.x_shape = (10, 20)
self.x_type = "float32"
self.index = [1, 3, 5]
self.index_type = "int32"
class TestCase4(TestXPUGatherOp):
def config(self):
self.x_shape = (10, 20)
self.attrs = {'use_xpu': True, 'overwrite': False}
self.x_type = "float32"
self.index = [1, 1]
self.index_type = "int32"
class TestCase5(TestXPUGatherOp):
def config(self):
self.x_shape = (10, 20)
self.attrs = {'use_xpu': True, 'overwrite': False}
self.x_type = "float32"
self.index = [1, 1, 3]
self.index_type = "int32"
class TestCase6(TestXPUGatherOp):
def config(self):
self.x_shape = (10, 20)
self.attrs = {'use_xpu': True, 'overwrite': True}
self.x_type = "float32"
self.index = [1, 3]
self.index_type = "int32"
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册