generate_proposals_op.cc 19.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include <cmath>
#include <cstring>
17 18 19
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
20
#include "paddle/fluid/operators/detail/safe_ref.h"
21 22 23 24 25 26 27 28 29
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

30
static const double kBBoxClipDefault = std::log(1000.0 / 16.0);
31

32 33 34 35 36 37 38 39 40
static void AppendProposals(Tensor *dst, int64_t offset, const Tensor &src) {
  auto *out_data = dst->data<void>();
  auto *to_add_data = src.data<void>();
  size_t size_of_t = framework::SizeOfType(src.type());
  offset *= size_of_t;
  std::memcpy(
      reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(out_data) + offset),
      to_add_data, src.numel() * size_of_t);
}
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

class GenerateProposalsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Scores"), "Input(Scores) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("BboxDeltas"),
                   "Input(BboxDeltas) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("ImInfo"), "Input(ImInfo) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Anchors"),
                   "Input(Anchors) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Variances"),
                   "Input(Variances) shouldn't be null.");

    ctx->SetOutputDim("RpnRois", {-1, 4});
    ctx->SetOutputDim("RpnRoiProbs", {-1, 1});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
63 64 65
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Anchors"),
        ctx.device_context());
66 67 68 69
  }
};

template <class T>
70 71 72
static inline void BoxCoder(const platform::DeviceContext &ctx,
                            Tensor *all_anchors, Tensor *bbox_deltas,
                            Tensor *variances, Tensor *proposals) {
73 74 75 76 77 78 79 80 81 82 83 84 85
  T *proposals_data = proposals->mutable_data<T>(ctx.GetPlace());

  int64_t row = all_anchors->dims()[0];
  int64_t len = all_anchors->dims()[1];

  auto *bbox_deltas_data = bbox_deltas->data<T>();
  auto *anchor_data = all_anchors->data<T>();
  const T *variances_data = nullptr;
  if (variances) {
    variances_data = variances->data<T>();
  }

  for (int64_t i = 0; i < row; ++i) {
86 87
    T anchor_width = anchor_data[i * len + 2] - anchor_data[i * len] + 1.0;
    T anchor_height = anchor_data[i * len + 3] - anchor_data[i * len + 1] + 1.0;
88

89 90
    T anchor_center_x = anchor_data[i * len] + 0.5 * anchor_width;
    T anchor_center_y = anchor_data[i * len + 1] + 0.5 * anchor_height;
91 92 93 94 95 96 97 98 99 100 101

    T bbox_center_x = 0, bbox_center_y = 0;
    T bbox_width = 0, bbox_height = 0;

    if (variances) {
      bbox_center_x =
          variances_data[i * len] * bbox_deltas_data[i * len] * anchor_width +
          anchor_center_x;
      bbox_center_y = variances_data[i * len + 1] *
                          bbox_deltas_data[i * len + 1] * anchor_height +
                      anchor_center_y;
102 103
      bbox_width = std::exp(std::min<T>(variances_data[i * len + 2] *
                                            bbox_deltas_data[i * len + 2],
104
                                        kBBoxClipDefault)) *
105
                   anchor_width;
106 107
      bbox_height = std::exp(std::min<T>(variances_data[i * len + 3] *
                                             bbox_deltas_data[i * len + 3],
108
                                         kBBoxClipDefault)) *
109 110 111 112 113 114
                    anchor_height;
    } else {
      bbox_center_x =
          bbox_deltas_data[i * len] * anchor_width + anchor_center_x;
      bbox_center_y =
          bbox_deltas_data[i * len + 1] * anchor_height + anchor_center_y;
115
      bbox_width = std::exp(std::min<T>(bbox_deltas_data[i * len + 2],
116
                                        kBBoxClipDefault)) *
117 118
                   anchor_width;
      bbox_height = std::exp(std::min<T>(bbox_deltas_data[i * len + 3],
119
                                         kBBoxClipDefault)) *
120
                    anchor_height;
121 122 123 124
    }

    proposals_data[i * len] = bbox_center_x - bbox_width / 2;
    proposals_data[i * len + 1] = bbox_center_y - bbox_height / 2;
125 126
    proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2 - 1;
    proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2 - 1;
127 128 129 130 131
  }
  // return proposals;
}

template <class T>
132 133
static inline void ClipTiledBoxes(const platform::DeviceContext &ctx,
                                  const Tensor &im_info, Tensor *boxes) {
134 135
  T *boxes_data = boxes->mutable_data<T>(ctx.GetPlace());
  const T *im_info_data = im_info.data<T>();
136
  T zero(0);
137 138 139
  for (int64_t i = 0; i < boxes->numel(); ++i) {
    if (i % 4 == 0) {
      boxes_data[i] =
140
          std::max(std::min(boxes_data[i], im_info_data[1] - 1), zero);
141 142
    } else if (i % 4 == 1) {
      boxes_data[i] =
143
          std::max(std::min(boxes_data[i], im_info_data[0] - 1), zero);
144 145
    } else if (i % 4 == 2) {
      boxes_data[i] =
146
          std::max(std::min(boxes_data[i], im_info_data[1] - 1), zero);
147 148
    } else {
      boxes_data[i] =
149
          std::max(std::min(boxes_data[i], im_info_data[0] - 1), zero);
150 151 152 153 154
    }
  }
}

template <class T>
155 156 157
static inline void FilterBoxes(const platform::DeviceContext &ctx,
                               Tensor *boxes, float min_size,
                               const Tensor &im_info, Tensor *keep) {
158 159
  const T *im_info_data = im_info.data<T>();
  T *boxes_data = boxes->mutable_data<T>(ctx.GetPlace());
160
  T im_scale = im_info_data[2];
161
  keep->Resize({boxes->dims()[0]});
162
  min_size = std::max(min_size, 1.0f);
163 164 165 166 167 168
  int *keep_data = keep->mutable_data<int>(ctx.GetPlace());

  int keep_len = 0;
  for (int i = 0; i < boxes->dims()[0]; ++i) {
    T ws = boxes_data[4 * i + 2] - boxes_data[4 * i] + 1;
    T hs = boxes_data[4 * i + 3] - boxes_data[4 * i + 1] + 1;
169 170 171 172
    T ws_origin_scale =
        (boxes_data[4 * i + 2] - boxes_data[4 * i]) / im_scale + 1;
    T hs_origin_scale =
        (boxes_data[4 * i + 3] - boxes_data[4 * i + 1]) / im_scale + 1;
173 174
    T x_ctr = boxes_data[4 * i] + ws / 2;
    T y_ctr = boxes_data[4 * i + 1] + hs / 2;
175 176
    if (ws_origin_scale >= min_size && hs_origin_scale >= min_size &&
        x_ctr <= im_info_data[1] && y_ctr <= im_info_data[0]) {
177 178 179 180 181 182 183
      keep_data[keep_len++] = i;
    }
  }
  keep->Resize({keep_len});
}

template <class T>
184 185 186 187
static inline std::vector<std::pair<T, int>> GetSortedScoreIndex(
    const std::vector<T> &scores) {
  std::vector<std::pair<T, int>> sorted_indices;
  sorted_indices.reserve(scores.size());
188
  for (size_t i = 0; i < scores.size(); ++i) {
189
    sorted_indices.emplace_back(scores[i], i);
190 191
  }
  // Sort the score pair according to the scores in descending order
192 193 194 195 196
  std::stable_sort(sorted_indices.begin(), sorted_indices.end(),
                   [](const std::pair<T, int> &a, const std::pair<T, int> &b) {
                     return a.first < b.first;
                   });
  return sorted_indices;
197 198 199
}

template <class T>
200
static inline T BBoxArea(const T *box, bool normalized) {
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
218
static inline T JaccardOverlap(const T *box1, const T *box2, bool normalized) {
219 220 221 222 223 224 225 226
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
227 228
    const T inter_w = std::max(T(0), inter_xmax - inter_xmin + 1);
    const T inter_h = std::max(T(0), inter_ymax - inter_ymin + 1);
229 230 231 232 233 234 235
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

236 237 238 239 240 241 242 243 244 245 246 247
template <typename T>
static inline Tensor VectorToTensor(const std::vector<T> &selected_indices,
                                    int selected_num) {
  Tensor keep_nms;
  keep_nms.Resize({selected_num});
  auto *keep_data = keep_nms.mutable_data<T>(platform::CPUPlace());
  for (int i = 0; i < selected_num; ++i) {
    keep_data[i] = selected_indices[i];
  }
  return keep_nms;
}

248
template <class T>
249 250
static inline Tensor NMS(const platform::DeviceContext &ctx, Tensor *bbox,
                         Tensor *scores, T nms_threshold, float eta) {
251 252 253 254 255 256 257
  PADDLE_ENFORCE_NOT_NULL(bbox);
  int64_t num_boxes = bbox->dims()[0];
  // 4: [xmin ymin xmax ymax]
  int64_t box_size = bbox->dims()[1];

  std::vector<T> scores_data(num_boxes);
  std::copy_n(scores->data<T>(), num_boxes, scores_data.begin());
258 259
  std::vector<std::pair<T, int>> sorted_indices =
      GetSortedScoreIndex<T>(scores_data);
260 261 262 263 264 265

  std::vector<int> selected_indices;
  int selected_num = 0;
  T adaptive_threshold = nms_threshold;
  const T *bbox_data = bbox->data<T>();
  while (sorted_indices.size() != 0) {
266 267 268
    int idx = sorted_indices.back().second;
    bool flag = true;
    for (int kept_idx : selected_indices) {
269 270 271 272 273 274 275 276 277 278
      if (flag) {
        T overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
                                      bbox_data + kept_idx * box_size, false);
        flag = (overlap <= adaptive_threshold);
      } else {
        break;
      }
    }
    if (flag) {
      selected_indices.push_back(idx);
279
      ++selected_num;
280
    }
J
jerrywgz 已提交
281
    sorted_indices.erase(sorted_indices.end() - 1);
282 283 284 285
    if (flag && eta < 1 && adaptive_threshold > 0.5) {
      adaptive_threshold *= eta;
    }
  }
286
  return VectorToTensor(selected_indices, selected_num);
287 288
}

289
template <typename T>
290 291 292 293 294 295
class GenerateProposalsKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *scores = context.Input<Tensor>("Scores");
    auto *bbox_deltas = context.Input<Tensor>("BboxDeltas");
    auto *im_info = context.Input<Tensor>("ImInfo");
296 297 298 299 300 301
    auto anchors = detail::Ref(context.Input<Tensor>("Anchors"),
                               "Cannot find input Anchors(%s) in scope",
                               context.Inputs("Anchors")[0]);
    auto variances = detail::Ref(context.Input<Tensor>("Variances"),
                                 "Cannot find input Variances(%s) in scope",
                                 context.Inputs("Variances")[0]);
302 303 304 305 306 307 308 309 310 311

    auto *rpn_rois = context.Output<LoDTensor>("RpnRois");
    auto *rpn_roi_probs = context.Output<LoDTensor>("RpnRoiProbs");

    int pre_nms_top_n = context.Attr<int>("pre_nms_topN");
    int post_nms_top_n = context.Attr<int>("post_nms_topN");
    float nms_thresh = context.Attr<float>("nms_thresh");
    float min_size = context.Attr<float>("min_size");
    float eta = context.Attr<float>("eta");

312 313
    auto &dev_ctx =
        context.template device_context<platform::CPUDeviceContext>();
314

315
    auto &scores_dim = scores->dims();
316 317 318 319 320
    int64_t num = scores_dim[0];
    int64_t c_score = scores_dim[1];
    int64_t h_score = scores_dim[2];
    int64_t w_score = scores_dim[3];

321
    auto &bbox_dim = bbox_deltas->dims();
322 323 324 325 326 327
    int64_t c_bbox = bbox_dim[1];
    int64_t h_bbox = bbox_dim[2];
    int64_t w_bbox = bbox_dim[3];

    rpn_rois->mutable_data<T>({bbox_deltas->numel() / 4, 4},
                              context.GetPlace());
328
    rpn_roi_probs->mutable_data<T>({scores->numel(), 1}, context.GetPlace());
329 330 331 332 333 334 335

    Tensor bbox_deltas_swap, scores_swap;
    bbox_deltas_swap.mutable_data<T>({num, h_bbox, w_bbox, c_bbox},
                                     dev_ctx.GetPlace());
    scores_swap.mutable_data<T>({num, h_score, w_score, c_score},
                                dev_ctx.GetPlace());

336
    math::Transpose<platform::CPUDeviceContext, T, 4> trans;
337 338 339 340 341
    std::vector<int> axis = {0, 2, 3, 1};
    trans(dev_ctx, *bbox_deltas, &bbox_deltas_swap, axis);
    trans(dev_ctx, *scores, &scores_swap, axis);

    framework::LoD lod;
342 343 344 345 346
    lod.resize(1);
    auto &lod0 = lod[0];
    lod0.push_back(0);
    anchors.Resize({anchors.numel() / 4, 4});
    variances.Resize({variances.numel() / 4, 4});
347 348 349 350 351 352 353 354 355 356 357

    int64_t num_proposals = 0;
    for (int64_t i = 0; i < num; ++i) {
      Tensor im_info_slice = im_info->Slice(i, i + 1);
      Tensor bbox_deltas_slice = bbox_deltas_swap.Slice(i, i + 1);
      Tensor scores_slice = scores_swap.Slice(i, i + 1);

      bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox / 4, 4});
      scores_slice.Resize({h_score * w_score * c_score, 1});

      std::pair<Tensor, Tensor> tensor_pair =
358
          ProposalForOneImage(dev_ctx, im_info_slice, anchors, variances,
359 360
                              bbox_deltas_slice, scores_slice, pre_nms_top_n,
                              post_nms_top_n, nms_thresh, min_size, eta);
361 362
      Tensor &proposals = tensor_pair.first;
      Tensor &scores = tensor_pair.second;
363

364 365
      AppendProposals(rpn_rois, 4 * num_proposals, proposals);
      AppendProposals(rpn_roi_probs, num_proposals, scores);
366
      num_proposals += proposals.dims()[0];
367
      lod0.push_back(num_proposals);
368 369 370 371 372 373 374 375
    }
    rpn_rois->set_lod(lod);
    rpn_roi_probs->set_lod(lod);
    rpn_rois->Resize({num_proposals, 4});
    rpn_roi_probs->Resize({num_proposals, 1});
  }

  std::pair<Tensor, Tensor> ProposalForOneImage(
376
      const platform::CPUDeviceContext &ctx, const Tensor &im_info_slice,
377 378 379 380 381 382 383 384 385 386 387 388 389 390
      const Tensor &anchors, const Tensor &variances,
      const Tensor &bbox_deltas_slice,  // [M, 4]
      const Tensor &scores_slice,       // [N, 1]
      int pre_nms_top_n, int post_nms_top_n, float nms_thresh, float min_size,
      float eta) const {
    auto *scores_data = scores_slice.data<T>();

    // Sort index
    Tensor index_t;
    index_t.Resize({scores_slice.numel()});
    int *index = index_t.mutable_data<int>(ctx.GetPlace());
    for (int i = 0; i < scores_slice.numel(); ++i) {
      index[i] = i;
    }
391 392 393
    auto compare = [scores_data](const int64_t &i, const int64_t &j) {
      return scores_data[i] > scores_data[j];
    };
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

    if (pre_nms_top_n <= 0 || pre_nms_top_n >= scores_slice.numel()) {
      std::sort(index, index + scores_slice.numel(), compare);
    } else {
      std::nth_element(index, index + pre_nms_top_n,
                       index + scores_slice.numel(), compare);
      index_t.Resize({pre_nms_top_n});
    }

    Tensor scores_sel, bbox_sel, anchor_sel, var_sel;
    scores_sel.mutable_data<T>({index_t.numel(), 1}, ctx.GetPlace());
    bbox_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    anchor_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    var_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());

    CPUGather<T>(ctx, scores_slice, index_t, &scores_sel);
    CPUGather<T>(ctx, bbox_deltas_slice, index_t, &bbox_sel);
    CPUGather<T>(ctx, anchors, index_t, &anchor_sel);
    CPUGather<T>(ctx, variances, index_t, &var_sel);

    Tensor proposals;
    proposals.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    BoxCoder<T>(ctx, &anchor_sel, &bbox_sel, &var_sel, &proposals);

    ClipTiledBoxes<T>(ctx, im_info_slice, &proposals);

    Tensor keep;
    FilterBoxes<T>(ctx, &proposals, min_size, im_info_slice, &keep);

    Tensor scores_filter;
    bbox_sel.mutable_data<T>({keep.numel(), 4}, ctx.GetPlace());
    scores_filter.mutable_data<T>({keep.numel(), 1}, ctx.GetPlace());
    CPUGather<T>(ctx, proposals, keep, &bbox_sel);
    CPUGather<T>(ctx, scores_sel, keep, &scores_filter);
    if (nms_thresh <= 0) {
429
      return std::make_pair(bbox_sel, scores_filter);
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    }

    Tensor keep_nms = NMS<T>(ctx, &bbox_sel, &scores_filter, nms_thresh, eta);

    if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
      keep_nms.Resize({post_nms_top_n});
    }

    proposals.mutable_data<T>({keep_nms.numel(), 4}, ctx.GetPlace());
    scores_sel.mutable_data<T>({keep_nms.numel(), 1}, ctx.GetPlace());
    CPUGather<T>(ctx, bbox_sel, keep_nms, &proposals);
    CPUGather<T>(ctx, scores_filter, keep_nms, &scores_sel);

    return std::make_pair(proposals, scores_sel);
  }
};

class GenerateProposalsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    AddInput("Scores",
             "(Tensor) The scores from conv is in shape (N, A, H, W), "
             "N is batch size, A is number of anchors, "
             "H and W are height and width of the feature map");
    AddInput("BboxDeltas",
             "(Tensor) Bounding box deltas from conv is in "
             "shape (N, 4*A, H, W).");
    AddInput("ImInfo",
             "(Tensor) Information for image reshape is in shape (N, 3), "
             "in format (height, width, scale)");
    AddInput("Anchors",
             "(Tensor) Bounding box anchors from anchor_generator_op "
             "is in shape (A, H, W, 4).");
    AddInput("Variances",
             "(Tensor) Bounding box variances with same shape as `Anchors`.");

    AddOutput("RpnRois",
              "(LoDTensor), Output proposals with shape (rois_num, 4).");
    AddOutput("RpnRoiProbs",
              "(LoDTensor) Scores of proposals with shape (rois_num, 1).");
    AddAttr<int>("pre_nms_topN",
                 "Number of top scoring RPN proposals to keep before "
                 "applying NMS.");
    AddAttr<int>("post_nms_topN",
                 "Number of top scoring RPN proposals to keep after "
                 "applying NMS");
    AddAttr<float>("nms_thresh", "NMS threshold used on RPN proposals.");
    AddAttr<float>("min_size",
                   "Proposal height and width both need to be greater "
                   "than this min_size.");
480
    AddAttr<float>("eta", "The parameter for adaptive NMS.");
481
    AddComment(R"DOC(
482 483 484 485 486 487
This operator Generate bounding box proposals for Faster RCNN.
The propoasls are generated for a list of images based on image
score 'Scores', bounding box regression result 'BboxDeltas' as
well as predefined bounding box shapes 'anchors'. Greedy
non-maximum suppression is applied to generate the final bounding
boxes.
488 489 490 491 492 493 494 495 496

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
497 498 499 500
REGISTER_OPERATOR(
    generate_proposals, ops::GenerateProposalsOp, ops::GenerateProposalsOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
501 502
REGISTER_OP_CPU_KERNEL(generate_proposals, ops::GenerateProposalsKernel<float>,
                       ops::GenerateProposalsKernel<double>);