generate_proposals_op.cc 19.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include <cmath>
#include <cstring>
17 18 19
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
20
#include "paddle/fluid/operators/detail/safe_ref.h"
21 22 23 24 25 26 27 28 29
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

30
static const double kBBoxClipDefault = std::log(1000.0 / 16.0);
31

32 33 34 35 36 37 38 39 40
static void AppendProposals(Tensor *dst, int64_t offset, const Tensor &src) {
  auto *out_data = dst->data<void>();
  auto *to_add_data = src.data<void>();
  size_t size_of_t = framework::SizeOfType(src.type());
  offset *= size_of_t;
  std::memcpy(
      reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(out_data) + offset),
      to_add_data, src.numel() * size_of_t);
}
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

class GenerateProposalsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Scores"), "Input(Scores) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("BboxDeltas"),
                   "Input(BboxDeltas) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("ImInfo"), "Input(ImInfo) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Anchors"),
                   "Input(Anchors) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Variances"),
                   "Input(Variances) shouldn't be null.");

    auto scores_dims = ctx->GetInputDim("Scores");
    auto bbox_deltas_dims = ctx->GetInputDim("BboxDeltas");
    auto im_info_dims = ctx->GetInputDim("ImInfo");
    auto anchors_dims = ctx->GetInputDim("Anchors");
    auto variances_dims = ctx->GetInputDim("Variances");

    ctx->SetOutputDim("RpnRois", {-1, 4});
    ctx->SetOutputDim("RpnRoiProbs", {-1, 1});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("Anchors")->type()),
71
        ctx.device_context());
72 73 74 75
  }
};

template <class T>
76 77 78
static inline void BoxCoder(const platform::DeviceContext &ctx,
                            Tensor *all_anchors, Tensor *bbox_deltas,
                            Tensor *variances, Tensor *proposals) {
79 80 81 82 83 84 85 86 87 88 89 90 91
  T *proposals_data = proposals->mutable_data<T>(ctx.GetPlace());

  int64_t row = all_anchors->dims()[0];
  int64_t len = all_anchors->dims()[1];

  auto *bbox_deltas_data = bbox_deltas->data<T>();
  auto *anchor_data = all_anchors->data<T>();
  const T *variances_data = nullptr;
  if (variances) {
    variances_data = variances->data<T>();
  }

  for (int64_t i = 0; i < row; ++i) {
92 93
    T anchor_width = anchor_data[i * len + 2] - anchor_data[i * len] + 1.0;
    T anchor_height = anchor_data[i * len + 3] - anchor_data[i * len + 1] + 1.0;
94

95 96
    T anchor_center_x = anchor_data[i * len] + 0.5 * anchor_width;
    T anchor_center_y = anchor_data[i * len + 1] + 0.5 * anchor_height;
97 98 99 100 101 102 103 104 105 106 107

    T bbox_center_x = 0, bbox_center_y = 0;
    T bbox_width = 0, bbox_height = 0;

    if (variances) {
      bbox_center_x =
          variances_data[i * len] * bbox_deltas_data[i * len] * anchor_width +
          anchor_center_x;
      bbox_center_y = variances_data[i * len + 1] *
                          bbox_deltas_data[i * len + 1] * anchor_height +
                      anchor_center_y;
108 109
      bbox_width = std::exp(std::min<T>(variances_data[i * len + 2] *
                                            bbox_deltas_data[i * len + 2],
110
                                        kBBoxClipDefault)) *
111
                   anchor_width;
112 113
      bbox_height = std::exp(std::min<T>(variances_data[i * len + 3] *
                                             bbox_deltas_data[i * len + 3],
114
                                         kBBoxClipDefault)) *
115 116 117 118 119 120
                    anchor_height;
    } else {
      bbox_center_x =
          bbox_deltas_data[i * len] * anchor_width + anchor_center_x;
      bbox_center_y =
          bbox_deltas_data[i * len + 1] * anchor_height + anchor_center_y;
121
      bbox_width = std::exp(std::min<T>(bbox_deltas_data[i * len + 2],
122
                                        kBBoxClipDefault)) *
123 124
                   anchor_width;
      bbox_height = std::exp(std::min<T>(bbox_deltas_data[i * len + 3],
125
                                         kBBoxClipDefault)) *
126
                    anchor_height;
127 128 129 130
    }

    proposals_data[i * len] = bbox_center_x - bbox_width / 2;
    proposals_data[i * len + 1] = bbox_center_y - bbox_height / 2;
131 132
    proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2 - 1;
    proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2 - 1;
133 134 135 136 137
  }
  // return proposals;
}

template <class T>
138 139
static inline void ClipTiledBoxes(const platform::DeviceContext &ctx,
                                  const Tensor &im_info, Tensor *boxes) {
140 141
  T *boxes_data = boxes->mutable_data<T>(ctx.GetPlace());
  const T *im_info_data = im_info.data<T>();
142
  T zero(0);
143 144 145
  for (int64_t i = 0; i < boxes->numel(); ++i) {
    if (i % 4 == 0) {
      boxes_data[i] =
146
          std::max(std::min(boxes_data[i], im_info_data[1] - 1), zero);
147 148
    } else if (i % 4 == 1) {
      boxes_data[i] =
149
          std::max(std::min(boxes_data[i], im_info_data[0] - 1), zero);
150 151
    } else if (i % 4 == 2) {
      boxes_data[i] =
152
          std::max(std::min(boxes_data[i], im_info_data[1] - 1), zero);
153 154
    } else {
      boxes_data[i] =
155
          std::max(std::min(boxes_data[i], im_info_data[0] - 1), zero);
156 157 158 159 160
    }
  }
}

template <class T>
161 162 163
static inline void FilterBoxes(const platform::DeviceContext &ctx,
                               Tensor *boxes, float min_size,
                               const Tensor &im_info, Tensor *keep) {
164 165
  const T *im_info_data = im_info.data<T>();
  T *boxes_data = boxes->mutable_data<T>(ctx.GetPlace());
166
  T im_scale = im_info_data[2];
167
  keep->Resize({boxes->dims()[0]});
168
  min_size = std::max(min_size, 1.0f);
169 170 171 172 173 174
  int *keep_data = keep->mutable_data<int>(ctx.GetPlace());

  int keep_len = 0;
  for (int i = 0; i < boxes->dims()[0]; ++i) {
    T ws = boxes_data[4 * i + 2] - boxes_data[4 * i] + 1;
    T hs = boxes_data[4 * i + 3] - boxes_data[4 * i + 1] + 1;
175 176 177 178
    T ws_origin_scale =
        (boxes_data[4 * i + 2] - boxes_data[4 * i]) / im_scale + 1;
    T hs_origin_scale =
        (boxes_data[4 * i + 3] - boxes_data[4 * i + 1]) / im_scale + 1;
179 180
    T x_ctr = boxes_data[4 * i] + ws / 2;
    T y_ctr = boxes_data[4 * i + 1] + hs / 2;
181 182
    if (ws_origin_scale >= min_size && hs_origin_scale >= min_size &&
        x_ctr <= im_info_data[1] && y_ctr <= im_info_data[0]) {
183 184 185 186 187 188 189
      keep_data[keep_len++] = i;
    }
  }
  keep->Resize({keep_len});
}

template <class T>
190 191 192 193
static inline std::vector<std::pair<T, int>> GetSortedScoreIndex(
    const std::vector<T> &scores) {
  std::vector<std::pair<T, int>> sorted_indices;
  sorted_indices.reserve(scores.size());
194
  for (size_t i = 0; i < scores.size(); ++i) {
195
    sorted_indices.emplace_back(scores[i], i);
196 197
  }
  // Sort the score pair according to the scores in descending order
198 199 200 201 202
  std::stable_sort(sorted_indices.begin(), sorted_indices.end(),
                   [](const std::pair<T, int> &a, const std::pair<T, int> &b) {
                     return a.first < b.first;
                   });
  return sorted_indices;
203 204 205
}

template <class T>
206
static inline T BBoxArea(const T *box, bool normalized) {
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
224
static inline T JaccardOverlap(const T *box1, const T *box2, bool normalized) {
225 226 227 228 229 230 231 232
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
233 234
    const T inter_w = std::max(T(0), inter_xmax - inter_xmin + 1);
    const T inter_h = std::max(T(0), inter_ymax - inter_ymin + 1);
235 236 237 238 239 240 241
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

242 243 244 245 246 247 248 249 250 251 252 253
template <typename T>
static inline Tensor VectorToTensor(const std::vector<T> &selected_indices,
                                    int selected_num) {
  Tensor keep_nms;
  keep_nms.Resize({selected_num});
  auto *keep_data = keep_nms.mutable_data<T>(platform::CPUPlace());
  for (int i = 0; i < selected_num; ++i) {
    keep_data[i] = selected_indices[i];
  }
  return keep_nms;
}

254
template <class T>
255 256
static inline Tensor NMS(const platform::DeviceContext &ctx, Tensor *bbox,
                         Tensor *scores, T nms_threshold, float eta) {
257 258 259 260 261 262 263
  PADDLE_ENFORCE_NOT_NULL(bbox);
  int64_t num_boxes = bbox->dims()[0];
  // 4: [xmin ymin xmax ymax]
  int64_t box_size = bbox->dims()[1];

  std::vector<T> scores_data(num_boxes);
  std::copy_n(scores->data<T>(), num_boxes, scores_data.begin());
264 265
  std::vector<std::pair<T, int>> sorted_indices =
      GetSortedScoreIndex<T>(scores_data);
266 267 268 269 270 271

  std::vector<int> selected_indices;
  int selected_num = 0;
  T adaptive_threshold = nms_threshold;
  const T *bbox_data = bbox->data<T>();
  while (sorted_indices.size() != 0) {
272 273 274
    int idx = sorted_indices.back().second;
    bool flag = true;
    for (int kept_idx : selected_indices) {
275 276 277 278 279 280 281 282 283 284
      if (flag) {
        T overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
                                      bbox_data + kept_idx * box_size, false);
        flag = (overlap <= adaptive_threshold);
      } else {
        break;
      }
    }
    if (flag) {
      selected_indices.push_back(idx);
285
      ++selected_num;
286
    }
287
    sorted_indices.erase(sorted_indices.end());
288 289 290 291
    if (flag && eta < 1 && adaptive_threshold > 0.5) {
      adaptive_threshold *= eta;
    }
  }
292
  return VectorToTensor(selected_indices, selected_num);
293 294
}

295
template <typename T>
296 297 298 299 300 301
class GenerateProposalsKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *scores = context.Input<Tensor>("Scores");
    auto *bbox_deltas = context.Input<Tensor>("BboxDeltas");
    auto *im_info = context.Input<Tensor>("ImInfo");
302 303 304 305 306 307
    auto anchors = detail::Ref(context.Input<Tensor>("Anchors"),
                               "Cannot find input Anchors(%s) in scope",
                               context.Inputs("Anchors")[0]);
    auto variances = detail::Ref(context.Input<Tensor>("Variances"),
                                 "Cannot find input Variances(%s) in scope",
                                 context.Inputs("Variances")[0]);
308 309 310 311 312 313 314 315 316 317

    auto *rpn_rois = context.Output<LoDTensor>("RpnRois");
    auto *rpn_roi_probs = context.Output<LoDTensor>("RpnRoiProbs");

    int pre_nms_top_n = context.Attr<int>("pre_nms_topN");
    int post_nms_top_n = context.Attr<int>("post_nms_topN");
    float nms_thresh = context.Attr<float>("nms_thresh");
    float min_size = context.Attr<float>("min_size");
    float eta = context.Attr<float>("eta");

318 319
    auto &dev_ctx =
        context.template device_context<platform::CPUDeviceContext>();
320

321
    auto &scores_dim = scores->dims();
322 323 324 325 326
    int64_t num = scores_dim[0];
    int64_t c_score = scores_dim[1];
    int64_t h_score = scores_dim[2];
    int64_t w_score = scores_dim[3];

327
    auto &bbox_dim = bbox_deltas->dims();
328 329 330 331 332 333
    int64_t c_bbox = bbox_dim[1];
    int64_t h_bbox = bbox_dim[2];
    int64_t w_bbox = bbox_dim[3];

    rpn_rois->mutable_data<T>({bbox_deltas->numel() / 4, 4},
                              context.GetPlace());
334
    rpn_roi_probs->mutable_data<T>({scores->numel(), 1}, context.GetPlace());
335 336 337 338 339 340 341

    Tensor bbox_deltas_swap, scores_swap;
    bbox_deltas_swap.mutable_data<T>({num, h_bbox, w_bbox, c_bbox},
                                     dev_ctx.GetPlace());
    scores_swap.mutable_data<T>({num, h_score, w_score, c_score},
                                dev_ctx.GetPlace());

342
    math::Transpose<platform::CPUDeviceContext, T, 4> trans;
343 344 345 346 347
    std::vector<int> axis = {0, 2, 3, 1};
    trans(dev_ctx, *bbox_deltas, &bbox_deltas_swap, axis);
    trans(dev_ctx, *scores, &scores_swap, axis);

    framework::LoD lod;
348 349 350 351 352
    lod.resize(1);
    auto &lod0 = lod[0];
    lod0.push_back(0);
    anchors.Resize({anchors.numel() / 4, 4});
    variances.Resize({variances.numel() / 4, 4});
353 354 355 356 357 358 359 360 361 362 363

    int64_t num_proposals = 0;
    for (int64_t i = 0; i < num; ++i) {
      Tensor im_info_slice = im_info->Slice(i, i + 1);
      Tensor bbox_deltas_slice = bbox_deltas_swap.Slice(i, i + 1);
      Tensor scores_slice = scores_swap.Slice(i, i + 1);

      bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox / 4, 4});
      scores_slice.Resize({h_score * w_score * c_score, 1});

      std::pair<Tensor, Tensor> tensor_pair =
364
          ProposalForOneImage(dev_ctx, im_info_slice, anchors, variances,
365 366
                              bbox_deltas_slice, scores_slice, pre_nms_top_n,
                              post_nms_top_n, nms_thresh, min_size, eta);
367 368
      Tensor &proposals = tensor_pair.first;
      Tensor &scores = tensor_pair.second;
369

370 371
      AppendProposals(rpn_rois, 4 * num_proposals, proposals);
      AppendProposals(rpn_roi_probs, num_proposals, scores);
372
      num_proposals += proposals.dims()[0];
373
      lod0.push_back(num_proposals);
374 375 376 377 378 379 380 381
    }
    rpn_rois->set_lod(lod);
    rpn_roi_probs->set_lod(lod);
    rpn_rois->Resize({num_proposals, 4});
    rpn_roi_probs->Resize({num_proposals, 1});
  }

  std::pair<Tensor, Tensor> ProposalForOneImage(
382
      const platform::CPUDeviceContext &ctx, const Tensor &im_info_slice,
383 384 385 386 387 388 389 390 391 392 393 394 395 396
      const Tensor &anchors, const Tensor &variances,
      const Tensor &bbox_deltas_slice,  // [M, 4]
      const Tensor &scores_slice,       // [N, 1]
      int pre_nms_top_n, int post_nms_top_n, float nms_thresh, float min_size,
      float eta) const {
    auto *scores_data = scores_slice.data<T>();

    // Sort index
    Tensor index_t;
    index_t.Resize({scores_slice.numel()});
    int *index = index_t.mutable_data<int>(ctx.GetPlace());
    for (int i = 0; i < scores_slice.numel(); ++i) {
      index[i] = i;
    }
397 398 399
    auto compare = [scores_data](const int64_t &i, const int64_t &j) {
      return scores_data[i] > scores_data[j];
    };
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

    if (pre_nms_top_n <= 0 || pre_nms_top_n >= scores_slice.numel()) {
      std::sort(index, index + scores_slice.numel(), compare);
    } else {
      std::nth_element(index, index + pre_nms_top_n,
                       index + scores_slice.numel(), compare);
      index_t.Resize({pre_nms_top_n});
    }

    Tensor scores_sel, bbox_sel, anchor_sel, var_sel;
    scores_sel.mutable_data<T>({index_t.numel(), 1}, ctx.GetPlace());
    bbox_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    anchor_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    var_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());

    CPUGather<T>(ctx, scores_slice, index_t, &scores_sel);
    CPUGather<T>(ctx, bbox_deltas_slice, index_t, &bbox_sel);
    CPUGather<T>(ctx, anchors, index_t, &anchor_sel);
    CPUGather<T>(ctx, variances, index_t, &var_sel);

    Tensor proposals;
    proposals.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    BoxCoder<T>(ctx, &anchor_sel, &bbox_sel, &var_sel, &proposals);

    ClipTiledBoxes<T>(ctx, im_info_slice, &proposals);

    Tensor keep;
    FilterBoxes<T>(ctx, &proposals, min_size, im_info_slice, &keep);

    Tensor scores_filter;
    bbox_sel.mutable_data<T>({keep.numel(), 4}, ctx.GetPlace());
    scores_filter.mutable_data<T>({keep.numel(), 1}, ctx.GetPlace());
    CPUGather<T>(ctx, proposals, keep, &bbox_sel);
    CPUGather<T>(ctx, scores_sel, keep, &scores_filter);
    if (nms_thresh <= 0) {
435
      return std::make_pair(bbox_sel, scores_filter);
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    }

    Tensor keep_nms = NMS<T>(ctx, &bbox_sel, &scores_filter, nms_thresh, eta);

    if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
      keep_nms.Resize({post_nms_top_n});
    }

    proposals.mutable_data<T>({keep_nms.numel(), 4}, ctx.GetPlace());
    scores_sel.mutable_data<T>({keep_nms.numel(), 1}, ctx.GetPlace());
    CPUGather<T>(ctx, bbox_sel, keep_nms, &proposals);
    CPUGather<T>(ctx, scores_filter, keep_nms, &scores_sel);

    return std::make_pair(proposals, scores_sel);
  }
};

class GenerateProposalsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    AddInput("Scores",
             "(Tensor) The scores from conv is in shape (N, A, H, W), "
             "N is batch size, A is number of anchors, "
             "H and W are height and width of the feature map");
    AddInput("BboxDeltas",
             "(Tensor) Bounding box deltas from conv is in "
             "shape (N, 4*A, H, W).");
    AddInput("ImInfo",
             "(Tensor) Information for image reshape is in shape (N, 3), "
             "in format (height, width, scale)");
    AddInput("Anchors",
             "(Tensor) Bounding box anchors from anchor_generator_op "
             "is in shape (A, H, W, 4).");
    AddInput("Variances",
             "(Tensor) Bounding box variances with same shape as `Anchors`.");

    AddOutput("RpnRois",
              "(LoDTensor), Output proposals with shape (rois_num, 4).");
    AddOutput("RpnRoiProbs",
              "(LoDTensor) Scores of proposals with shape (rois_num, 1).");
    AddAttr<int>("pre_nms_topN",
                 "Number of top scoring RPN proposals to keep before "
                 "applying NMS.");
    AddAttr<int>("post_nms_topN",
                 "Number of top scoring RPN proposals to keep after "
                 "applying NMS");
    AddAttr<float>("nms_thresh", "NMS threshold used on RPN proposals.");
    AddAttr<float>("min_size",
                   "Proposal height and width both need to be greater "
                   "than this min_size.");
486
    AddAttr<float>("eta", "The parameter for adaptive NMS.");
487
    AddComment(R"DOC(
488 489 490 491 492 493
This operator Generate bounding box proposals for Faster RCNN.
The propoasls are generated for a list of images based on image
score 'Scores', bounding box regression result 'BboxDeltas' as
well as predefined bounding box shapes 'anchors'. Greedy
non-maximum suppression is applied to generate the final bounding
boxes.
494 495 496 497 498 499 500 501 502 503 504 505

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(generate_proposals, ops::GenerateProposalsOp,
                  ops::GenerateProposalsOpMaker,
                  paddle::framework::EmptyGradOpMaker);
506 507
REGISTER_OP_CPU_KERNEL(generate_proposals, ops::GenerateProposalsKernel<float>,
                       ops::GenerateProposalsKernel<double>);