im2col_cfo_cpu.h 8.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
#include "paddle/fluid/framework/tensor.h"

namespace paddle {
namespace operators {
namespace math {

24
/**
T
tensor-tang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 * The most common im2col algorithm.
 * Support dilation, stride and padding.
 */
template <typename T>
inline void im2col_common(const framework::Tensor& im,
                          const std::vector<int>& dilation,
                          const std::vector<int>& stride,
                          const std::vector<int>& padding,
                          framework::Tensor* col) {
  int im_channels = im.dims()[0];
  int im_height = im.dims()[1];
  int im_width = im.dims()[2];
  int filter_height = col->dims()[1];
  int filter_width = col->dims()[2];
  int output_height = col->dims()[3];
  int output_width = col->dims()[4];
  int channels_col = im_channels * filter_height * filter_width;

  const T* im_data = im.data<T>();
  T* col_data = col->data<T>();
  for (int c = 0; c < channels_col; ++c) {
    int w_offset = c % filter_width;
    int h_offset = (c / filter_width) % filter_height;
    int c_im = c / (filter_width * filter_height);
    for (int h = 0; h < output_height; ++h) {
      int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
      for (int w = 0; w < output_width; ++w) {
        int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1];
        int col_idx = (c * output_height + h) * output_width + w;
        int im_idx = (im_row_idx + c_im * im_height) * im_width + im_col_idx;
        col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height ||
                             im_col_idx < 0 || im_col_idx >= im_width)
                                ? static_cast<T>(0)
                                : im_data[im_idx];
      }
    }
  }
}

64
/**
T
tensor-tang 已提交
65
 * im2col algorithm with strides == 1, dilations == 1, paddings == 0
66
 */
T
tensor-tang 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
template <typename T>
inline void im2col_sh1sw1dh1dw1ph0pw0(const framework::Tensor& im,
                                      framework::Tensor* col) {
  int im_channels = im.dims()[0];
  int im_height = im.dims()[1];
  int im_width = im.dims()[2];
  int filter_height = col->dims()[1];
  int filter_width = col->dims()[2];
  int output_height = col->dims()[3];
  int output_width = col->dims()[4];

  const T* im_data = im.data<T>();
  T* col_data = col->data<T>();
  int col_matrix_width = output_width * output_height;
  int im_size = im_height * im_width;
  size_t copy_size = sizeof(T) * output_width;
83 84
  const T* im_data_oh = im_data;
  T* dst_data_oh = col_data;
T
tensor-tang 已提交
85
  for (int oh = 0; oh < output_height; ++oh) {
86 87
    const T* src_data_ic = im_data_oh;
    T* dst_data = dst_data_oh;
T
tensor-tang 已提交
88
    for (int ic = 0; ic < im_channels; ++ic) {
89
      const T* src_data = src_data_ic;
T
tensor-tang 已提交
90 91 92 93 94 95 96
      for (int kh = 0; kh < filter_height; ++kh) {
        for (int kw = 0; kw < filter_width; ++kw) {
          std::memcpy(dst_data, src_data + kw, copy_size);
          dst_data = dst_data + col_matrix_width;
        }
        src_data = src_data + im_width;
      }
97
      src_data_ic = src_data_ic + im_size;
T
tensor-tang 已提交
98
    }
99 100
    im_data_oh = im_data_oh + im_width;
    dst_data_oh = dst_data_oh + output_width;
T
tensor-tang 已提交
101 102 103
  }
}

104 105 106 107
/**
 * im2col algorithm with strides == 1, dilations == 1, paddings == 1
 * and filter_width == 1 have a special implementation
 */
T
tensor-tang 已提交
108
template <typename T>
109 110
inline void im2col_sh1sw1dh1dw1ph1pw1(const framework::Tensor& im,
                                      framework::Tensor* col) {
T
tensor-tang 已提交
111 112 113 114 115 116 117
  int im_channels = im.dims()[0];
  int im_height = im.dims()[1];
  int im_width = im.dims()[2];
  int filter_height = col->dims()[1];
  int filter_width = col->dims()[2];
  int output_height = col->dims()[3];
  int output_width = col->dims()[4];
118 119 120 121 122

  constexpr int plh = 1;
  constexpr int prh = 1;
  constexpr int plw = 1;
  constexpr int prw = 1;
T
tensor-tang 已提交
123 124 125 126

  const T* im_data = im.data<T>();
  T* col_data = col->data<T>();
  int im_size = im_height * im_width;
127
  int col_matrix_width = output_width * output_height;
T
tensor-tang 已提交
128 129
  int col_block_fh = filter_width * col_matrix_width;  // fw*oh*ow
  int col_block_ic = filter_height * col_block_fh;     // fh*fw*oh*ow
130 131 132 133 134 135 136

  // fill height padding
  {
    size_t copy_size = sizeof(T) * output_width;
    T* col_start_l = col_data;
    T* col_start_r = col_data + (filter_height - 1) * col_block_fh +
                     col_matrix_width - output_width;
T
tensor-tang 已提交
137
    for (int ic = 0; ic < im_channels; ++ic) {
138 139
      T* dst_data_l = col_start_l;
      T* dst_data_r = col_start_r;
T
tensor-tang 已提交
140
      for (int kw = 0; kw < filter_width; ++kw) {
141 142
        std::memset(dst_data_l, 0, copy_size);
        std::memset(dst_data_r, 0, copy_size);
T
tensor-tang 已提交
143 144 145
        dst_data_l = dst_data_l + col_matrix_width;
        dst_data_r = dst_data_r + col_matrix_width;
      }
146 147
      col_start_l = col_start_l + col_block_ic;
      col_start_r = col_start_r + col_block_ic;
T
tensor-tang 已提交
148 149 150
    }
  }

151 152 153
  auto pad = static_cast<T>(0);
  if (filter_width == 1) {
    // fill width padding
154
    T* dst_data_ic = col_data;
T
tensor-tang 已提交
155
    for (int ic = 0; ic < im_channels; ++ic) {
156
      T* dst_data_kh = dst_data_ic;
T
tensor-tang 已提交
157
      for (int kh = 0; kh < filter_height; ++kh) {
158
        T* dst_data = dst_data_kh;
159 160 161 162 163
        for (int oh = 0; oh < output_height; ++oh) {
          *dst_data = pad;
          dst_data = dst_data + output_width - 1;
          *dst_data = pad;
          ++dst_data;
T
tensor-tang 已提交
164
        }
165
        dst_data_kh = dst_data_kh + col_block_fh;
T
tensor-tang 已提交
166
      }
167
      dst_data_ic = dst_data_ic + col_block_ic;
T
tensor-tang 已提交
168
    }
169 170
    // fill core
    size_t copy_size = sizeof(T) * (output_width - plw - prw);
T
tensor-tang 已提交
171 172 173 174 175 176 177 178 179 180
    for (int oh = 0; oh < output_height; ++oh) {
      const T* im_data_start =
          im_data + (oh - plh > 0 ? oh - plh : 0) * im_width;
      T* dst_data = col_data + oh * output_width;
      for (int ic = 0; ic < im_channels; ++ic) {
        const T* src_data = im_data_start + ic * im_size;
        for (int kh = 0; kh < filter_height; ++kh) {
          if ((oh < plh && kh < plh) || (oh > (output_height - prh - 1) &&
                                         kh > (filter_height - prh - 1))) {
            dst_data = dst_data + col_matrix_width;
181
            continue;
T
tensor-tang 已提交
182
          }
183 184
          std::memcpy(dst_data + plw, src_data, copy_size);
          dst_data = dst_data + col_matrix_width;
T
tensor-tang 已提交
185 186 187 188
          src_data = src_data + im_width;
        }
      }
    }
189 190 191 192 193
    return;
  }

  // filter_width != 1
  // fill width padding
194
  T* dst_data_ic = col_data;
195
  for (int ic = 0; ic < im_channels; ++ic) {
196
    T* dst_data_kh = dst_data_ic;
197 198 199 200 201 202 203 204 205 206
    for (int kh = 0; kh < filter_height; ++kh) {
      for (T* dst_data :
           {dst_data_kh, dst_data_kh + (filter_width - prw) * col_matrix_width +
                             output_width - 1}) {
        // TODO(TJ): from plh, saving repeated assignment
        for (int oh = 0; oh < output_height; ++oh) {
          *dst_data = pad;
          dst_data = dst_data + output_width;
        }
      }
207
      dst_data_kh = dst_data_kh + col_block_fh;
208
    }
209
    dst_data_ic = dst_data_ic + col_block_ic;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
  }

  // TODO(TJ): use array like: size_t copy_size[kw]={sizeof(T) *
  // (output_width-1)}
  // length of copy_size is equal kw.
  for (int oh = 0; oh < output_height; ++oh) {
    const T* im_data_start = im_data + (oh - plh > 0 ? oh - plh : 0) * im_width;
    T* dst_data = col_data + oh * output_width;
    for (int ic = 0; ic < im_channels; ++ic) {
      const T* src_data = im_data_start + ic * im_size;
      for (int kh = 0; kh < filter_height; ++kh) {
        if ((oh < plh && kh < plh) || (oh > (output_height - prh - 1) &&
                                       kh > (filter_height - prh - 1))) {
          dst_data = dst_data + filter_width * col_matrix_width;
          continue;
        }
        // TODO(TJ): reuse plw-kw outside this for
        // try to unify
        for (int kw = 0; kw < plw; ++kw) {
          std::memcpy(dst_data + (plw - kw), src_data,
                      sizeof(T) * (output_width - (plw - kw)));
          dst_data = dst_data + col_matrix_width;
        }
        for (int kw = plw; kw < filter_width - prw; ++kw) {
          std::memcpy(dst_data, src_data + (kw - plw),
                      sizeof(T) * output_width);
          dst_data = dst_data + col_matrix_width;
        }
        int i = 1;
        for (int kw = filter_width - prw; kw < filter_width; ++kw, ++i) {
          std::memcpy(dst_data, src_data + (kw - plw),
                      sizeof(T) * (output_width - i));
          dst_data = dst_data + col_matrix_width;
        }
        src_data = src_data + im_width;
      }
    }
T
tensor-tang 已提交
247 248 249 250 251 252
  }
}

}  // namespace math
}  // namespace operators
}  // namespace paddle