im2col_cfo_cpu.h 8.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
#include "paddle/fluid/framework/tensor.h"

namespace paddle {
namespace operators {
namespace math {

24
/**
T
tensor-tang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 * The most common im2col algorithm.
 * Support dilation, stride and padding.
 */
template <typename T>
inline void im2col_common(const framework::Tensor& im,
                          const std::vector<int>& dilation,
                          const std::vector<int>& stride,
                          const std::vector<int>& padding,
                          framework::Tensor* col) {
  int im_channels = im.dims()[0];
  int im_height = im.dims()[1];
  int im_width = im.dims()[2];
  int filter_height = col->dims()[1];
  int filter_width = col->dims()[2];
  int output_height = col->dims()[3];
  int output_width = col->dims()[4];
  int channels_col = im_channels * filter_height * filter_width;

  const T* im_data = im.data<T>();
  T* col_data = col->data<T>();
  for (int c = 0; c < channels_col; ++c) {
    int w_offset = c % filter_width;
    int h_offset = (c / filter_width) % filter_height;
    int c_im = c / (filter_width * filter_height);
    for (int h = 0; h < output_height; ++h) {
      int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
      for (int w = 0; w < output_width; ++w) {
        int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1];
        int col_idx = (c * output_height + h) * output_width + w;
        int im_idx = (im_row_idx + c_im * im_height) * im_width + im_col_idx;
        col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height ||
                             im_col_idx < 0 || im_col_idx >= im_width)
                                ? static_cast<T>(0)
                                : im_data[im_idx];
      }
    }
  }
}

64
/**
T
tensor-tang 已提交
65
 * im2col algorithm with strides == 1, dilations == 1, paddings == 0
66
 */
T
tensor-tang 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
template <typename T>
inline void im2col_sh1sw1dh1dw1ph0pw0(const framework::Tensor& im,
                                      framework::Tensor* col) {
  int im_channels = im.dims()[0];
  int im_height = im.dims()[1];
  int im_width = im.dims()[2];
  int filter_height = col->dims()[1];
  int filter_width = col->dims()[2];
  int output_height = col->dims()[3];
  int output_width = col->dims()[4];

  const T* im_data = im.data<T>();
  T* col_data = col->data<T>();
  int col_matrix_width = output_width * output_height;
  int im_size = im_height * im_width;
  size_t copy_size = sizeof(T) * output_width;
  for (int oh = 0; oh < output_height; ++oh) {
    const T* im_data_start = im_data + oh * im_width;
    T* dst_data = col_data + oh * output_width;
    for (int ic = 0; ic < im_channels; ++ic) {
      const T* src_data = im_data_start + ic * im_size;
      for (int kh = 0; kh < filter_height; ++kh) {
        for (int kw = 0; kw < filter_width; ++kw) {
          std::memcpy(dst_data, src_data + kw, copy_size);
          dst_data = dst_data + col_matrix_width;
        }
        src_data = src_data + im_width;
      }
    }
  }
}

99 100 101 102
/**
 * im2col algorithm with strides == 1, dilations == 1, paddings == 1
 * and filter_width == 1 have a special implementation
 */
T
tensor-tang 已提交
103
template <typename T>
104 105
inline void im2col_sh1sw1dh1dw1ph1pw1(const framework::Tensor& im,
                                      framework::Tensor* col) {
T
tensor-tang 已提交
106 107 108 109 110 111 112
  int im_channels = im.dims()[0];
  int im_height = im.dims()[1];
  int im_width = im.dims()[2];
  int filter_height = col->dims()[1];
  int filter_width = col->dims()[2];
  int output_height = col->dims()[3];
  int output_width = col->dims()[4];
113 114 115 116 117

  constexpr int plh = 1;
  constexpr int prh = 1;
  constexpr int plw = 1;
  constexpr int prw = 1;
T
tensor-tang 已提交
118 119 120 121

  const T* im_data = im.data<T>();
  T* col_data = col->data<T>();
  int im_size = im_height * im_width;
122
  int col_matrix_width = output_width * output_height;
T
tensor-tang 已提交
123 124
  int col_block_fh = filter_width * col_matrix_width;  // fw*oh*ow
  int col_block_ic = filter_height * col_block_fh;     // fh*fw*oh*ow
125 126 127 128 129 130 131

  // fill height padding
  {
    size_t copy_size = sizeof(T) * output_width;
    T* col_start_l = col_data;
    T* col_start_r = col_data + (filter_height - 1) * col_block_fh +
                     col_matrix_width - output_width;
T
tensor-tang 已提交
132
    for (int ic = 0; ic < im_channels; ++ic) {
133
      // TODO(TJ): move * outside
T
tensor-tang 已提交
134 135 136
      T* dst_data_l = col_start_l + ic * col_block_ic;
      T* dst_data_r = col_start_r + ic * col_block_ic;
      for (int kw = 0; kw < filter_width; ++kw) {
137 138
        std::memset(dst_data_l, 0, copy_size);
        std::memset(dst_data_r, 0, copy_size);
T
tensor-tang 已提交
139 140 141 142 143 144
        dst_data_l = dst_data_l + col_matrix_width;
        dst_data_r = dst_data_r + col_matrix_width;
      }
    }
  }

145 146 147
  auto pad = static_cast<T>(0);
  if (filter_width == 1) {
    // fill width padding
T
tensor-tang 已提交
148
    for (int ic = 0; ic < im_channels; ++ic) {
149
      // TODO(TJ): move * outside
T
tensor-tang 已提交
150 151
      T* dst_data_ic = col_data + ic * col_block_ic;
      for (int kh = 0; kh < filter_height; ++kh) {
152 153 154 155 156 157 158
        // TODO(TJ): move * outside
        T* dst_data = dst_data_ic + kh * col_block_fh;
        for (int oh = 0; oh < output_height; ++oh) {
          *dst_data = pad;
          dst_data = dst_data + output_width - 1;
          *dst_data = pad;
          ++dst_data;
T
tensor-tang 已提交
159 160 161
        }
      }
    }
162 163
    // fill core
    size_t copy_size = sizeof(T) * (output_width - plw - prw);
T
tensor-tang 已提交
164 165 166 167 168 169 170 171 172 173
    for (int oh = 0; oh < output_height; ++oh) {
      const T* im_data_start =
          im_data + (oh - plh > 0 ? oh - plh : 0) * im_width;
      T* dst_data = col_data + oh * output_width;
      for (int ic = 0; ic < im_channels; ++ic) {
        const T* src_data = im_data_start + ic * im_size;
        for (int kh = 0; kh < filter_height; ++kh) {
          if ((oh < plh && kh < plh) || (oh > (output_height - prh - 1) &&
                                         kh > (filter_height - prh - 1))) {
            dst_data = dst_data + col_matrix_width;
174
            continue;
T
tensor-tang 已提交
175
          }
176 177
          std::memcpy(dst_data + plw, src_data, copy_size);
          dst_data = dst_data + col_matrix_width;
T
tensor-tang 已提交
178 179 180 181
          src_data = src_data + im_width;
        }
      }
    }
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    return;
  }

  // filter_width != 1
  // fill width padding
  for (int ic = 0; ic < im_channels; ++ic) {
    // TODO(TJ): move * outside
    T* dst_data_ic = col_data + ic * col_block_ic;
    for (int kh = 0; kh < filter_height; ++kh) {
      // TODO(TJ): move * outside
      T* dst_data_kh = dst_data_ic + kh * col_block_fh;
      for (T* dst_data :
           {dst_data_kh, dst_data_kh + (filter_width - prw) * col_matrix_width +
                             output_width - 1}) {
        // TODO(TJ): from plh, saving repeated assignment
        for (int oh = 0; oh < output_height; ++oh) {
          *dst_data = pad;
          dst_data = dst_data + output_width;
        }
      }
    }
  }

  // TODO(TJ): use array like: size_t copy_size[kw]={sizeof(T) *
  // (output_width-1)}
  // length of copy_size is equal kw.
  for (int oh = 0; oh < output_height; ++oh) {
    const T* im_data_start = im_data + (oh - plh > 0 ? oh - plh : 0) * im_width;
    T* dst_data = col_data + oh * output_width;
    for (int ic = 0; ic < im_channels; ++ic) {
      const T* src_data = im_data_start + ic * im_size;
      for (int kh = 0; kh < filter_height; ++kh) {
        if ((oh < plh && kh < plh) || (oh > (output_height - prh - 1) &&
                                       kh > (filter_height - prh - 1))) {
          dst_data = dst_data + filter_width * col_matrix_width;
          continue;
        }
        // TODO(TJ): reuse plw-kw outside this for
        // try to unify
        for (int kw = 0; kw < plw; ++kw) {
          std::memcpy(dst_data + (plw - kw), src_data,
                      sizeof(T) * (output_width - (plw - kw)));
          dst_data = dst_data + col_matrix_width;
        }
        for (int kw = plw; kw < filter_width - prw; ++kw) {
          std::memcpy(dst_data, src_data + (kw - plw),
                      sizeof(T) * output_width);
          dst_data = dst_data + col_matrix_width;
        }
        int i = 1;
        for (int kw = filter_width - prw; kw < filter_width; ++kw, ++i) {
          std::memcpy(dst_data, src_data + (kw - plw),
                      sizeof(T) * (output_width - i));
          dst_data = dst_data + col_matrix_width;
        }
        src_data = src_data + im_width;
      }
    }
T
tensor-tang 已提交
240 241 242 243 244 245
  }
}

}  // namespace math
}  // namespace operators
}  // namespace paddle