pool2d_op.cc 12.0 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h"
N
nhzlx 已提交
17

W
wanghuancoder 已提交
18 19 20
namespace paddle {
namespace framework {
class Scope;
21

W
wanghuancoder 已提交
22 23 24 25 26 27
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

N
nhzlx 已提交
28 29 30 31
namespace paddle {
namespace inference {
namespace tensorrt {

32 33 34 35
inline void DealCeilMode(const nvinfer1::Dims &input_shape,
                         std::vector<int> ksize, std::vector<int> strides,
                         std::vector<int> paddings, nvinfer1::DimsHW *pre_pad,
                         nvinfer1::DimsHW *post_pad, int input_dims) {
N
nhzlx 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  int input_height = input_shape.d[input_dims - 2];
  int input_width = input_shape.d[input_dims - 1];
  int floor_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
  int ceil_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
          strides[0] +
      1;

  int floor_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
  int ceil_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1] + strides[1] - 1) / strides[1] +
      1;
  if (floor_h_output_size != ceil_h_output_size) {
    post_pad->h() = strides[0] - 1;
  }

  if (floor_w_output_size != ceil_w_output_size) {
    post_pad->w() = strides[1] - 1;
  }
}

N
nhzlx 已提交
59 60 61 62 63
/*
 * Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights.
 */
class Pool2dOpConverter : public OpConverter {
 public:
N
nhzlx 已提交
64 65
  void operator()(const framework::proto::OpDesc &op,
                  const framework::Scope &scope, bool test_mode) override {
M
minqiyang 已提交
66
    VLOG(4)
N
nhzlx 已提交
67 68
        << "convert a fluid pool2d op to tensorrt pool2d layer without bias";
    framework::OpDesc op_desc(op, nullptr);
N
nhzlx 已提交
69 70 71 72
    auto *input1 = engine_->GetITensor(op_desc.Input("X")[0]);
    nvinfer1::Dims input_shape = input1->getDimensions();
    int input_dims = input_shape.nbDims;

73 74
    bool global_pooling =
        BOOST_GET_CONST(bool, op_desc.GetAttr("global_pooling"));
N
nhzlx 已提交
75
    std::string pool_type =
76
        BOOST_GET_CONST(std::string, op_desc.GetAttr("pooling_type"));
N
nhzlx 已提交
77
    std::vector<int> ksize =
78
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("ksize"));
N
nhzlx 已提交
79
    std::vector<int> strides =
80
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));
N
nhzlx 已提交
81
    std::vector<int> paddings =
82
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("paddings"));
83 84 85
    bool exclusive = op_desc.HasAttr("exclusive")
                         ? BOOST_GET_CONST(bool, op_desc.GetAttr("exclusive"))
                         : true;
86
    bool ceil_mode = BOOST_GET_CONST(bool, op_desc.GetAttr("ceil_mode"));
87 88
    bool adaptive = false;
    if (op_desc.HasAttr("adaptive"))
89
      adaptive = BOOST_GET_CONST(bool, op_desc.GetAttr("adaptive"));
90 91 92 93
    std::string padding_algorithm = "EXPLICIT";
    if (op_desc.HasAttr("padding_algorithm"))
      padding_algorithm =
          BOOST_GET_CONST(std::string, op_desc.GetAttr("padding_algorithm"));
N
nhzlx 已提交
94

N
nhzlx 已提交
95
    nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX;
96 97
    nvinfer1::ReduceOperation reduce_operation =
        nvinfer1::ReduceOperation::kMAX;
98 99
    plugin::PoolPlugin::PoolType plugin_pool_type =
        plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
100
    if (pool_type == "max") {
N
nhzlx 已提交
101
      nv_pool_type = nvinfer1::PoolingType::kMAX;
102
      reduce_operation = nvinfer1::ReduceOperation::kMAX;
103
      plugin_pool_type = plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
104
    } else if (pool_type == "avg") {
N
nhzlx 已提交
105
      nv_pool_type = nvinfer1::PoolingType::kAVERAGE;
106
      reduce_operation = nvinfer1::ReduceOperation::kAVG;
107
      plugin_pool_type = plugin::PoolPlugin::PoolType::avg;
N
nhzlx 已提交
108 109
    }

110 111 112
    if (padding_algorithm == "VALID") {
      std::fill(paddings.begin(), paddings.end(), 0);
    }
N
nhzlx 已提交
113 114 115 116 117
    nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
    nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
    nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

    nvinfer1::ILayer *layer = nullptr;
W
wenbin 已提交
118 119
    nvinfer1::DimsHW g_pre_pad(0, 0);
    nvinfer1::DimsHW g_post_pad(0, 0);
W
wenbin 已提交
120 121 122 123 124
    // paddle Non ceil_mode : Output size = (input size - filter size + 2 *
    // padding) / stride (stride size) + 1
    // tensorrt EXPLICIT_ROUND_DOWN: O = floor((M - DK) / S) + 1
    // so if M - DK < 0 we need extra padding
    if (input_shape.d[input_dims - 2] - ksize[0] + 2 * paddings[0] < 0) {
W
wenbin 已提交
125
      g_post_pad.h() = strides[0] - 1;
W
wenbin 已提交
126 127
    }
    if (input_shape.d[input_dims - 1] - ksize[1] + 2 * paddings[1] < 0) {
W
wenbin 已提交
128
      g_post_pad.w() = strides[1] - 1;
W
wenbin 已提交
129
    }
N
nhzlx 已提交
130

131 132 133
    if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
      CHECK(op_desc.HasAttr("X_scale"));
134
      float input_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
135 136 137 138
      engine_->SetTensorDynamicRange(input1, input_scale);
#endif
    }

139
    if (engine_->with_dynamic_shape()) {
140
      if (!adaptive && !global_pooling && !ceil_mode) {
W
wenbin 已提交
141 142 143 144 145
        // input_shape.d < 0 means we can't get shape info here.
        // we may suffer from issue if shape is not met finally.
        if ((padding_algorithm != "SAME") &&
            ((g_post_pad.w() > 0 && input_shape.d[input_dims - 2] > 0) ||
             (g_post_pad.h() > 0 && input_shape.d[input_dims - 1] > 0))) {
W
wenbin 已提交
146
          auto *pad_layer = TRT_ENGINE_ADD_LAYER(engine_, Padding, *input1,
W
wenbin 已提交
147
                                                 g_pre_pad, g_post_pad);
W
wenbin 已提交
148 149 150 151 152 153
          PADDLE_ENFORCE_NOT_NULL(
              pad_layer, platform::errors::Fatal(
                             "Pad layer in poolOp converter could not be "
                             "created. The pointer to pad layer is `NULL`."));
          input1 = pad_layer->getOutput(0);
        }
W
wenbin 已提交
154

155 156 157 158 159 160 161 162 163 164
        auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                                nv_pool_type, nv_ksize);
        pool_layer->setStride(nv_strides);
        pool_layer->setPadding(nv_paddings);
        pool_layer->setAverageCountExcludesPadding(exclusive);
        if (padding_algorithm == "SAME") {
          pool_layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
        }
        layer = pool_layer;
      } else if (!adaptive && !global_pooling && ceil_mode) {
165 166 167 168
        auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                                nv_pool_type, nv_ksize);
        pool_layer->setStride(nv_strides);
        pool_layer->setPadding(nv_paddings);
169
        pool_layer->setAverageCountExcludesPadding(exclusive);
170 171
        if (padding_algorithm == "SAME") {
          pool_layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
172 173
        } else {
          pool_layer->setPaddingMode(nvinfer1::PaddingMode::kEXPLICIT_ROUND_UP);
174
        }
175
        layer = pool_layer;
176 177 178 179
      } else if (global_pooling) {
        auto *reduce_layer = TRT_ENGINE_ADD_LAYER(engine_, Reduce, *input1,
                                                  reduce_operation, 12, true);
        layer = reduce_layer;
180 181 182 183 184
      } else {
#if IS_TRT_VERSION_GE(6000)
        plugin::PoolPluginDynamic *plugin =
            new plugin::PoolPluginDynamic(ceil_mode, pool_type, adaptive, ksize,
                                          strides, paddings, global_pooling);
185
        layer = engine_->AddDynamicPlugin(&input1, 1, plugin);
186 187 188 189 190 191 192 193 194 195 196 197
#endif
      }
      auto output_name = op_desc.Output("Out")[0];
      layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
      if (test_mode) {
        engine_->DeclareOutput(output_name);
      }
      return;
    }

N
nhzlx 已提交
198 199 200
    if (global_pooling == true) {
      nv_ksize.d[0] = input_shape.d[input_dims - 2];
      nv_ksize.d[1] = input_shape.d[input_dims - 1];
W
wenbin 已提交
201 202
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                              nv_pool_type, nv_ksize);
203
      PADDLE_ENFORCE_NOT_NULL(
204 205
          pool_layer, platform::errors::Fatal(
                          "trt pool layer in converter could not be created."));
N
nhzlx 已提交
206
      auto output_name = op_desc.Output("Out")[0];
207 208
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
209 210 211
      if (padding_algorithm == "SAME") {
        pool_layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
      }
212 213 214 215 216
      pool_layer->setAverageCountExcludesPadding(exclusive);
      pool_layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      pool_layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, pool_layer->getOutput(0));
      layer = pool_layer;
N
nhzlx 已提交
217
      if (test_mode) {
N
nhzlx 已提交
218
        engine_->DeclareOutput(output_name);
219
      }
N
nhzlx 已提交
220 221
      return;
    }
222

223
    if (!adaptive) {
N
nhzlx 已提交
224
      if (ceil_mode) {
W
wenbin 已提交
225 226
        nvinfer1::DimsHW pre_pad(0, 0);
        nvinfer1::DimsHW post_pad(0, 0);
N
nhzlx 已提交
227 228 229
        // If ceil mode is true, we will pad the appropriate size to the input.
        DealCeilMode(input_shape, ksize, strides, paddings, &pre_pad, &post_pad,
                     input_dims);
W
wenbin 已提交
230 231
        auto *pad_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Padding, *input1, pre_pad, post_pad);
W
wenbin 已提交
232

N
nhzlx 已提交
233
        PADDLE_ENFORCE_NOT_NULL(
234 235 236
            pad_layer, platform::errors::Fatal(
                           "Pad layer in poolOp converter could not be "
                           "created. The pointer to pad layer is `NULL`."));
N
nhzlx 已提交
237 238
        input1 = pad_layer->getOutput(0);
      }
W
wenbin 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
#if IS_TRT_VERSION_GE(8000)
      // Exclude padding pixels from the average mean is not supported well by
      // TRT
      // so enable padding for trt8.0 above.
      if ((g_post_pad.w() > 0 || g_post_pad.h() > 0) &&
          (padding_algorithm != "SAME") && !ceil_mode) {
        auto *pad_layer = TRT_ENGINE_ADD_LAYER(engine_, Padding, *input1,
                                               g_pre_pad, g_post_pad);
        PADDLE_ENFORCE_NOT_NULL(
            pad_layer, platform::errors::Fatal(
                           "Pad layer in poolOp converter could not be "
                           "created. The pointer to pad layer is `NULL`."));
        input1 = pad_layer->getOutput(0);
      }
#endif
W
wenbin 已提交
254 255
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                              nv_pool_type, nv_ksize);
256 257 258
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer, platform::errors::Fatal(
                          "trt pool layer in converter could not be created."));
N
nhzlx 已提交
259 260
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
261 262 263
      if (padding_algorithm == "SAME") {
        pool_layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
      }
264
      pool_layer->setAverageCountExcludesPadding(exclusive);
N
nhzlx 已提交
265 266 267 268 269 270 271 272
      layer = pool_layer;
    } else {
      // Average pooling needs to exclude the padding pixels from the average
      // mean.
      // It is not supported well by TRT, we use a plugin here.
      std::vector<int> input_shape_v;
      for (int i = 0; i < input_dims; i++) {
        input_shape_v.push_back(input_shape.d[i]);
273
      }
274 275 276 277
      plugin::PoolPlugin *plugin =
          new plugin::PoolPlugin(ceil_mode, plugin_pool_type, adaptive, ksize,
                                 strides, paddings, input_shape_v);
      auto *pool_layer = engine_->AddPlugin(&input1, 1, plugin);
278 279 280 281
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer,
          platform::errors::Fatal(
              "trt pool plugin layer in converter could not be created."));
282
      layer = pool_layer;
283
    }
N
nhzlx 已提交
284
    auto output_name = op_desc.Output("Out")[0];
285
    RreplenishLayerAndOutput(layer, "pool2d", {output_name}, test_mode);
N
nhzlx 已提交
286 287 288 289 290 291 292 293 294
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

USE_OP(pool2d);
REGISTER_TRT_OP_CONVERTER(pool2d, Pool2dOpConverter);