softmax_with_cross_entropy_op.cu 45.7 KB
Newer Older
S
sneaxiy 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
C
caoying03 已提交
6 7 8 9 10
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
11 12 13 14 15 16 17
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
18
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
S
sneaxiy 已提交
19
#include "paddle/fluid/operators/math/cross_entropy.h"
20
#include "paddle/fluid/operators/math/math_function.h"
21
#include "paddle/fluid/operators/softmax_cudnn_op.cu.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/operators/softmax_with_cross_entropy_op.h"
S
sneaxiy 已提交
23
#include "paddle/fluid/platform/for_range.h"
24 25 26 27 28
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#else
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
29

C
caoying03 已提交
30 31 32
namespace paddle {
namespace operators {

33 34
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using DataLayout = platform::DataLayout;
C
caoying03 已提交
35 36
using Tensor = framework::Tensor;

37
// Wrapper of log function. Use log(float32) for float16
38
template <typename T>
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
static __device__ __forceinline__ T Log(T x) {
  using AccT = typename details::MPTypeTrait<T>::Type;
  AccT logx = std::log(static_cast<AccT>(x));
  return math::TolerableValue<T>()(static_cast<T>(logx));
}

// Wrapper of exp function. Use exp(float32) for float16
template <typename T>
static __device__ __forceinline__ T Exp(T x) {
  using AccT = typename details::MPTypeTrait<T>::Type;
  AccT expx = std::exp(static_cast<AccT>(x));
  return math::TolerableValue<T>()(static_cast<T>(expx));
}

// log2(value)
static inline int Log2Ceil(int value) {
  int log2_value = 0;
  while ((1 << log2_value) < value) ++log2_value;
  return log2_value;
}

enum class SoftmaxMode { kSoftmax, kLogSoftmax, kCrossEntropy };

/*
  Hard label cross entropy.
*/
template <typename T, bool IgnoreIndex>
__global__ void CrossEntropyHardLabel(T* loss, const T* softmax,
                                      const int64_t* labels, const int n,
                                      const int dim, const int d,
                                      const int ignore_idx) {
  int64_t ids = blockIdx.x * blockDim.x + threadIdx.x;
  int64_t idx_n = ids / d;
  int64_t idx_d = ids % d;

  // thread ids compute loss[ids] using softmax[idx]
  if (ids < n * d) {
76 77 78 79 80 81 82 83 84 85 86
    if (labels[ids] < 0) {  // label is negative
      loss[ids] = static_cast<T>(0.0);
    } else {  // label is positive of zero
      int64_t idx = idx_n * dim * d + labels[ids] * d + idx_d;
      if (IgnoreIndex == true) {
        // IgnoreIndex is true
        if (labels[ids] == ignore_idx) {
          loss[ids] = static_cast<T>(0.0);
        } else {
          loss[ids] = -Log(softmax[idx]);
        }
87
      } else {
88
        // IgnoreIndex is false
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        loss[ids] = -Log(softmax[idx]);
      }
    }
  }
}

/*
  Hard label cross entropy with exp.
  Input: log softmax
  Output: loss and exp(input)
*/
template <typename T, bool IgnoreIndex>
__global__ void CrossEntropyExpHardLabel(T* loss, T* softmax,
                                         const int64_t* labels, const int n,
                                         const int dim, const int d,
                                         const int ignore_idx) {
  int64_t idx = blockIdx.x * blockDim.x + threadIdx.x;
  int64_t idx_n = idx / (d * dim);
  int64_t idx_dim = (idx / d) % dim;
  int64_t idx_d = idx % d;
  int64_t ids = idx_n * d + idx_d;

  if (idx < n * dim * d) {
    if (IgnoreIndex == true) {
      // IgnoreIndex is true
      if (idx_dim == labels[ids]) {
        if (labels[ids] == ignore_idx) {
          loss[ids] = static_cast<T>(0.0);
        } else {
          loss[ids] = -softmax[idx];
        }
      }
    } else {
      // IgnoreIndex is false
      if (labels[ids] >= 0 && labels[ids] < dim) {
        if (labels[ids] == idx_dim) {
          loss[ids] = -softmax[idx];
        }
      } else {
        loss[ids] = static_cast<T>(0.0);
      }
130
    }
131
    softmax[idx] = Exp(softmax[idx]);
132 133 134
  }
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
/*
  Core function of softmax with cross entropy forward
    - softmax, SoftmaxMode=kSoftmax
    - log softmax, SoftmaxMode=kLogSoftmax
    - softmax with cross entropy hard label, SoftmaxMode=kCrossEntropy
  The computation includes
    - Compute max value: maxvalue_{i} = max_j src_{i,j}
    - Compute sum of exp: s_{i} = sum_{j}{e^{src_{i,j} - maxvalue_{i}}}
    - Compute: softmax_{i,j} = e^{src_{i,j} - maxvalue_{i}} / s_{i}
    - Compute: logsoftmax_{i,j} = src_{i,j} - maxvalue_{i} - log(s_{i})
    - Compute: loss_{i} = -logsoftmax[i,label[i]] (Hard label)
  This computation results from following formula:
    softmax_{i,j} = e^{src_{i,j}} / sum_{j}{e^{src_{i,j}}}
                  = e^{src_{i,j} - maxvalue_{i}}
                    / sum_{j}{e^{src_{i,j} - maxvalue_{i}}}
                  = e^{src_{i,j} - maxvalue_{i}} / s_{i}
    logsoftmax_{i,j} = log(softmax_{i,j})
                     = src_{i,j} - maxvalue_{i} - log(s_{i})
  One warp (32 threads) is used to compute 1 or 2 batch (kBatchSize).
  For reduction max (sum), firstly compute max (sum) to one warp, then use
  shuffle api to compute max (sum) in one warp.
*/
template <typename T, typename VecT, typename AccT, int Log2Elements,
          SoftmaxMode mode, bool IgnoreIndex>
__global__ void WarpSoftmaxForward(T* loss, T* softmax, const T* src,
                                   const int64_t* label, const int batch_size,
                                   const int stride, const int element_count,
                                   const int ignore_index) {
  constexpr int kDimCeil = 1 << Log2Elements;
  constexpr int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
  constexpr int kVSize = sizeof(VecT) / sizeof(T);
  constexpr int kIterations = kDimCeil / kWarpSize;
  constexpr int kIterationsV =
      (kIterations >= kVSize) ? (kIterations / kVSize) : 1;
  constexpr int kBatchSize = (kDimCeil <= 128) ? 2 : 1;

  int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * kBatchSize;

  // max index to read
  int idx_max_v[kBatchSize];
#pragma unroll
  for (int i = 0; i < kBatchSize; i++) {
    int idx_max = ((i + first_batch) < batch_size) ? element_count : 0;
    idx_max_v[i] = idx_max / kVSize;
  }

  // read data from global memory
  AccT srcdata[kBatchSize][kIterationsV][kVSize];

#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
// read data to srcdata: - KVSize==1, - KVSize>1
#pragma unroll
    for (int it = 0; it < kIterationsV; ++it) {
      int src_idx = threadIdx.x + it * kWarpSize;
      if (kVSize == 1) {
        if (src_idx < idx_max_v[i]) {
          srcdata[i][it][0] =
              static_cast<AccT>(src[(first_batch + i) * stride + src_idx]);
        } else {
          srcdata[i][it][0] = -std::numeric_limits<AccT>::infinity();
        }
      } else {
        const VecT* src_v =
            reinterpret_cast<const VecT*>(&src[(first_batch + i) * stride]);
        if (src_idx < idx_max_v[i]) {
          VecT srctmp = src_v[src_idx];
          const T* srcinptr = reinterpret_cast<const T*>(&srctmp);
#pragma unroll
          for (int s = 0; s < kVSize; s++) {
            srcdata[i][it][s] = static_cast<AccT>(srcinptr[s]);
          }
        } else {
#pragma unroll
          for (int s = 0; s < kVSize; s++) {
            srcdata[i][it][s] = -std::numeric_limits<AccT>::infinity();
          }
        }
      }
    }
  }

  // compute max value: maxvalue_{i} = max_j src_{i,j}
  AccT max_value[kBatchSize];
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
    // it = 0
    AccT valmax = srcdata[i][0][0];
#pragma unroll
    for (int s = 1; s < kVSize; ++s) {
      valmax = (valmax > srcdata[i][0][s]) ? valmax : srcdata[i][0][s];
    }
    max_value[i] = valmax;

// it = 1, 2, ...
#pragma unroll
    for (int it = 1; it < kIterationsV; ++it) {
      AccT valmax = srcdata[i][it][0];
#pragma unroll
      for (int s = 1; s < kVSize; ++s) {
        valmax = (valmax > srcdata[i][it][s]) ? valmax : srcdata[i][it][s];
      }
      max_value[i] = (max_value[i] > valmax) ? max_value[i] : valmax;
    }
  }
  WarpReduceMax<AccT, kBatchSize, kWarpSize>(max_value);

  // compute sum: s_{i} = sum_{j}{ exp(src_{i,j} - maxvalue_{i} }
  AccT sum[kBatchSize];
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
    // it = 0
    if (mode == SoftmaxMode::kLogSoftmax ||
        mode == SoftmaxMode::kCrossEntropy) {
      sum[i] = std::exp(srcdata[i][0][0] - max_value[i]);
    } else {
      srcdata[i][0][0] = std::exp(srcdata[i][0][0] - max_value[i]);
      sum[i] = srcdata[i][0][0];
    }
#pragma unroll
    for (int s = 1; s < kVSize; ++s) {
      if (mode == SoftmaxMode::kLogSoftmax ||
          mode == SoftmaxMode::kCrossEntropy) {
        sum[i] += std::exp(srcdata[i][0][s] - max_value[i]);
      } else {
        srcdata[i][0][s] = std::exp(srcdata[i][0][s] - max_value[i]);
        sum[i] += srcdata[i][0][s];
      }
    }

// it = 1, 2, ...
#pragma unroll
    for (int it = 1; it < kIterationsV; ++it) {
#pragma unroll
      for (int s = 0; s < kVSize; ++s) {
        if (mode == SoftmaxMode::kLogSoftmax ||
            mode == SoftmaxMode::kCrossEntropy) {
          sum[i] += std::exp(srcdata[i][it][s] - max_value[i]);
        } else {
          srcdata[i][it][s] = std::exp(srcdata[i][it][s] - max_value[i]);
          sum[i] += srcdata[i][it][s];
        }
      }
    }
  }
  WarpReduceSum<AccT, kBatchSize, kWarpSize>(sum);

// write data
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
    if (mode == SoftmaxMode::kLogSoftmax ||
        mode == SoftmaxMode::kCrossEntropy) {
      sum[i] = std::log(sum[i]);
    }

#pragma unroll
    for (int it = 0; it < kIterationsV; ++it) {
      int idx = threadIdx.x + it * kWarpSize;
      if (kVSize == 1) {  // kVSize==1
        if (idx < idx_max_v[i]) {
          if (mode == SoftmaxMode::kLogSoftmax) {  // log softmax
            softmax[(first_batch + i) * stride + idx] =
                srcdata[i][it][0] - max_value[i] - sum[i];
            // softmax with cross entropy hard label
          } else if (mode == SoftmaxMode::kCrossEntropy) {
            AccT logsoftmax = srcdata[i][it][0] - max_value[i] - sum[i];
            // softmax
            softmax[(first_batch + i) * stride + idx] = std::exp(logsoftmax);
            // label
            int loss_idx = (threadIdx.x + it * kWarpSize) * kVSize;
            if (IgnoreIndex == true) {
              // IgnoreIndex is true
              if (label[first_batch + i] == loss_idx) {
                if (label[first_batch + i] != ignore_index) {
                  loss[first_batch + i] = -logsoftmax;
                } else {
                  loss[first_batch + i] = static_cast<T>(0.0);
                }
              }
            } else {
              // IgnoreIndex is false
              if (label[first_batch + i] >= 0 &&
                  label[first_batch + i] < element_count) {
                if (label[first_batch + i] == loss_idx) {
                  loss[first_batch + i] = -logsoftmax;
                }
              } else {
                loss[first_batch + i] = static_cast<T>(0.0);
              }
            }
          } else {  // softmax
            softmax[(first_batch + i) * stride + idx] =
                srcdata[i][it][0] / sum[i];
          }
        } else {
          break;
        }
      } else {  // KVSize>1
        VecT* softmax_v =
            reinterpret_cast<VecT*>(&softmax[(first_batch + i) * stride]);
        VecT tmpdata;
        T* tmpptr = reinterpret_cast<T*>(&tmpdata);
#pragma unroll
        for (int s = 0; s < kVSize; ++s) {
          if (mode == SoftmaxMode::kLogSoftmax) {  // log softmax
            tmpptr[s] = srcdata[i][it][s] - max_value[i] - sum[i];
            // softmax with cross entropy hard label
          } else if (mode == SoftmaxMode::kCrossEntropy) {
            AccT logsoftmax = srcdata[i][it][s] - max_value[i] - sum[i];
            // softmax
            tmpptr[s] = std::exp(logsoftmax);
            // label
            int loss_idx = (threadIdx.x + it * kWarpSize) * kVSize + s;
            if (IgnoreIndex == true) {
              // IgnoreIndex is true
              if (label[first_batch + i] == loss_idx &&
                  label[first_batch + i] != ignore_index) {
                loss[first_batch + i] = -logsoftmax;
              }
            } else {
              // IgnoreIndex is false
              if (label[first_batch + i] >= 0 &&
                  label[first_batch + i] < element_count) {
                if (label[first_batch + i] == loss_idx) {
                  loss[first_batch + i] = -logsoftmax;
                }
              } else {
                loss[first_batch + i] = static_cast<T>(0.0);
              }
            }
          } else {  // softmax
            tmpptr[s] = srcdata[i][it][s] / sum[i];
          }
        }
        if (idx < idx_max_v[i]) {
          softmax_v[idx] = tmpdata;
        } else {
          break;
        }
      }
    }
  }
}

#define SOFTMAX_WARP_FORWARD_CASE(Log2Elements, VecT, AccT)           \
  case Log2Elements:                                                  \
    WarpSoftmaxForward<T, VecT, AccT, Log2Elements, mode,             \
                       IgnoreIndex><<<blocks, threads, 0, stream>>>(  \
        loss, softmax, src, label, batch_size, stride, element_count, \
        ignore_index);                                                \
    break;

/*
  Wrapper of softmax with cross entropy forward hard label.
*/
template <typename T, SoftmaxMode mode, bool IgnoreIndex>
void SwitchWarpSoftmaxForward(T* loss, T* softmax, const T* src,
                              const int64_t* label, const int batch_size,
                              const int stride, const int element_count,
                              const int ignore_index, gpuStream_t stream) {
  using AccT = typename details::MPTypeTrait<T>::Type;

  // use 128 threads per block to maximimize gpu utilization
  const int Log2Elements = static_cast<int>(Log2Ceil(element_count));
  const int kDimCeil = 1 << Log2Elements;
  int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
  int batches_per_warp = (kDimCeil <= 128) ? 2 : 1;
  constexpr int threads_per_block = 128;
  int warps_per_block = (threads_per_block / kWarpSize);
  int batches_per_block = warps_per_block * batches_per_warp;
  int blocks = (batch_size + batches_per_block - 1) / batches_per_block;
  dim3 threads(kWarpSize, warps_per_block, 1);

  switch (Log2Elements) {
    SOFTMAX_WARP_FORWARD_CASE(0, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(1, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(2, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(3, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(4, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(5, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(6, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(7, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(8, T, AccT);
    SOFTMAX_WARP_FORWARD_CASE(9, T, AccT);
    default:
      break;
  }
}

/*
  Wrapper of softmax with cross entropy hard label.
  - SwitchWarpSoftmaxForward for small size
  - cudnn function for large size
*/
template <typename T, bool IgnoreIndex>
static void SoftmaxWithCrossEntropyHardLabel(
    const platform::CUDADeviceContext& ctx, int rank, int axis,
    const T* logits_data, const int64_t* labels_data, T* loss_data,
    T* softmax_data, int N, int dim, int D, const int ignore_index) {
  auto stream = ctx.stream();
  constexpr int max_dim = 320;
  if (D == 1 && dim <= max_dim) {  // small size
    const SoftmaxMode mode = SoftmaxMode::kCrossEntropy;
    SwitchWarpSoftmaxForward<T, mode, IgnoreIndex>(
        loss_data, softmax_data, logits_data, labels_data, N, dim, dim,
        ignore_index, stream);
  } else {
    ScopedTensorDescriptor desc;
    std::vector<int> tensor_dims = {N, dim, D, 1};
    DataLayout layout = DataLayout::kNCHW;
#ifdef PADDLE_WITH_HIP
    miopenTensorDescriptor_t descp = desc.descriptor<T>(layout, tensor_dims);
#else
    cudnnTensorDescriptor_t descp = desc.descriptor<T>(layout, tensor_dims);
#endif

    auto handle = ctx.cudnn_handle();

#ifdef PADDLE_WITH_HIP
    auto mode = axis == rank - 1 ? MIOPEN_SOFTMAX_MODE_INSTANCE
                                 : MIOPEN_SOFTMAX_MODE_CHANNEL;
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSoftmaxForward_V2(
        handle, platform::CudnnDataType<T>::kOne(), descp, logits_data,
        platform::CudnnDataType<T>::kZero(), descp, softmax_data,
        MIOPEN_SOFTMAX_LOG, mode));
#else
    auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                                 : CUDNN_SOFTMAX_MODE_CHANNEL;
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSoftmaxForward(
        handle, CUDNN_SOFTMAX_LOG, mode, platform::CudnnDataType<T>::kOne(),
        descp, logits_data, platform::CudnnDataType<T>::kZero(), descp,
        softmax_data));
#endif
    int threads = 128;
    int blocks = (N * dim * D + threads - 1) / threads;
    // compute cross entropy, input is log softmax
    CrossEntropyExpHardLabel<T, IgnoreIndex><<<blocks, threads, 0, stream>>>(
        loss_data, softmax_data, labels_data, N, dim, D, ignore_index);
  }
}

/*
  Wrapper of softmax with cross entropy grad hard label.
*/
479
template <typename T>
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
__global__ void SoftmaxWithCrossEntropyGradHardLabel(
    T* logits_grad, const T* loss_grad, const int64_t* labels, const int64_t n,
    const int64_t dim, const int64_t d, const int ignore_index) {
  int64_t idx = blockIdx.x * blockDim.x + threadIdx.x;
  int64_t idx_n = idx / (d * dim);
  int64_t idx_dim = (idx / d) % dim;
  int64_t idx_d = idx % d;
  int64_t ids = idx_n * d + idx_d;

  if (idx < n * dim * d) {
    if (labels[ids] == ignore_index) {
      logits_grad[idx] = static_cast<T>(0.0);
    } else if (labels[ids] == idx_dim) {
      logits_grad[idx] =
          (logits_grad[idx] - static_cast<T>(1.0)) * loss_grad[ids];
495
    } else {
496
      logits_grad[idx] *= loss_grad[ids];
497
    }
498 499 500 501 502 503
  }
}

template <typename T>
__global__ void SoftCrossEntropyGradientKernel(T* logit_grad,
                                               const T* loss_grad,
504 505 506 507
                                               const T* labels, const int64_t n,
                                               const int64_t d,
                                               const int64_t remain) {
  int64_t ids = blockIdx.x * blockDim.x + threadIdx.x;
508
  if (ids < n * d) {
509 510 511
    int64_t idx_n = ids / d;
    int64_t idx_remain = ids % remain;
    int64_t idx_loss = idx_n * remain + idx_remain;
512
    logit_grad[ids] = loss_grad[idx_loss] * (logit_grad[ids] - labels[ids]);
C
caoying03 已提交
513
  }
C
caoying03 已提交
514
}
S
sneaxiy 已提交
515

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
template <typename T>
__global__ void SoftLabelCrossEntropyGradientKernel(T* logit_grad,
                                                    const T* loss_grad,
                                                    const T* labels,
                                                    const int n, const int d,
                                                    const int remain) {
  int ids = blockIdx.x * blockDim.x + threadIdx.x;
  if (ids < n * d) {
    int idx_n = ids / d;
    int idx_remain = ids % remain;
    int idx_loss = idx_n * remain + idx_remain;
    logit_grad[ids] = loss_grad[idx_loss] * (-labels[ids] / logit_grad[ids]);
  }
}

template <typename T>
__global__ void HardLabelCrossEntropyGradientKernel(T* logit_grad,
                                                    const int64_t* labels,
                                                    const int n, const int d,
                                                    const int remain,
                                                    const int ignore_index) {
  CUDA_KERNEL_LOOP(index, n * remain) {
    int idx_n = index / remain;
    int idx_remain = index % remain;
    int tmp = labels[index];
    int idx = idx_n * d + tmp * remain + idx_remain;
    if (ignore_index != tmp) {
      logit_grad[idx] = -static_cast<T>(1.) / logit_grad[idx];
    }
  }
}

template <typename T>
__global__ void ScaleCrossEntropyGradient(T* logit_grad, const T* loss_grad,
                                          const int num, const int d,
                                          const int remain,
                                          const int64_t* labels,
                                          const int ignore_index) {
  CUDA_KERNEL_LOOP(index, num) {
    int idx_n = index / d;
    int idx_remain = index % remain;
    int idx_lbl = idx_n * remain + idx_remain;
    int k = (index % d) / remain;
    if (labels[idx_lbl] == ignore_index || labels[idx_lbl] != k) {
      logit_grad[index] = static_cast<T>(0.);
    } else {
      logit_grad[index] *= loss_grad[idx_lbl];
    }
  }
}

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
static __device__ __forceinline__ platform::float16 exp_on_device(
    platform::float16 x) {
  return ::Eigen::numext::exp(x);
}
static __device__ __forceinline__ float exp_on_device(float x) {
  return expf(x);
}
static __device__ __forceinline__ double exp_on_device(double x) {
  return exp(x);
}
static __device__ __forceinline__ platform::float16 log_on_device(
    platform::float16 x) {
  return math::TolerableValue<platform::float16>()(::Eigen::numext::log(x));
}
static __device__ __forceinline__ float log_on_device(float x) {
S
sneaxiy 已提交
582 583
  return math::TolerableValue<float>()(logf(x));
}
584
static __device__ __forceinline__ double log_on_device(double x) {
S
sneaxiy 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
  return math::TolerableValue<double>()(log(x));
}

/** In the following codes, 3 CUDA kernels are implemented to calculate softmax
 * and loss **/
/*
  Supposing the x is `logits` and y is `labels`, the equations are as
followings:
  cross\_entropy_i = \sum_{j}[- y_i_j * log({e^{x_i_j}/\sum_{j}e^{x_i_j}})]
        = \sum_{j}[- y_i_j * log({e^{x_i_j - max_i}/\sum_{j}e^{x_i_j-max_i}})]
        = \sum_{j}[-y_i_j * (x_i_j - max_i - log\sum_{j}e^{x_i_j - max_i})]
        = \sum_{j}[-y_i_j * (x_i_j - max_i - logDiffMaxSum_i)]
        = \sum_{j}(-y_i_j * tmp_i_j)
  softmax_i_j = e^{tmp_i_j}
where:
  max_i = \max_{j}{x_i_j}
  logDiffMaxSum_i = log\sum_{j}e^{x_i_j - max_i}
  tmp_i_j = x_i_j - max_i - logDiffMaxSum_i
Therefore, the calculation can be separated into 3 steps:
Step 1: row-wise operation to calculate max_i
Step 2: row-wise operation to calculate logDiffMaxSum_i
T
tianshuo78520a 已提交
606
Step 3: calculate tmp_i_j, and finally get softmax_i_j and cross\_entropy_i
S
sneaxiy 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
To save memory, we can share memory among max_i, logDiffMaxSum_i and
cross\_entropy_i.
In this way, the 3 steps should be changed to:
Step 1 (RowReductionForMax): row-wise operation to calculate max_i
Step 2 (RowReductionForDiffMaxSum): calculate immediate result of softmax'_i_j =
x_i_j - max_i, and row-wise operation to calculate logDiffMaxSum_i
Step 3 (RowReductionForSoftmaxAndCrossEntropy): calculate tmp_i_j = softmax'_i_j
- logDiffMaxSum_i, and finally get softmax_i_j and cross\_entropy_i
*/

// There are 3 kinds of reduce algorithms in cub:
// BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY
// BLOCK_REDUCE_RAKING
// BLOCK_REDUCE_WARP_REDUCTIONS (default)
template <typename T, int BlockDim>
using BlockReduce =
    cub::BlockReduce<T, BlockDim /*, cub::BLOCK_REDUCE_WARP_REDUCTIONS*/>;

template <typename T, int BlockDim>
using BlockReduceTempStorage = typename BlockReduce<T, BlockDim>::TempStorage;

628
// Make sure that BlockDim <= axis_dim
S
sneaxiy 已提交
629 630
// This kernel is used to calculate the max element of each row
template <typename T, int BlockDim>
S
sneaxiy 已提交
631
static __global__ void RowReductionForMax(const T* logits_data, T* max_data,
632
                                          int64_t d, int axis_dim) {
S
sneaxiy 已提交
633 634
  __shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;

635 636 637
  // logits_data view as [n, axis_dim, remain]
  // max_data view as [n, 1, remain]
  // blockDim = n * remain, split blockIdx to idx_n and idx_remain
638 639 640 641 642
  int64_t remain = d / axis_dim;
  int64_t idx_n = blockIdx.x / remain;
  int64_t idx_remain = blockIdx.x % remain;
  int64_t beg_idx = idx_n * d + threadIdx.x * remain + idx_remain;
  int64_t end_idx = (idx_n + 1) * d;
S
sneaxiy 已提交
643

644
  int64_t step = BlockDim * remain;
S
sneaxiy 已提交
645
  T cur_max = logits_data[beg_idx];
646
  beg_idx += step;
S
sneaxiy 已提交
647 648 649 650
  while (beg_idx < end_idx) {
    if (cur_max < logits_data[beg_idx]) {
      cur_max = logits_data[beg_idx];
    }
651
    beg_idx += step;
S
sneaxiy 已提交
652 653 654 655
  }

  cur_max = BlockReduce<T, BlockDim>(temp_storage).Reduce(cur_max, cub::Max());

656
  if (threadIdx.x == 0) max_data[blockIdx.x] = cur_max;
S
sneaxiy 已提交
657 658
}

659
// Make sure that BlockDim <= axis_dim
S
sneaxiy 已提交
660 661
template <typename T, int BlockDim, bool CalculateLogSoftmax = false>
static __global__ void RowReductionForDiffMaxSum(const T* logits_data,
662 663
                                                 T* max_data, T* softmax,
                                                 int64_t d, int axis_dim) {
S
sneaxiy 已提交
664 665
  __shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;

666 667 668
  // logits, softmax data view as [n, axis_dim, remain]
  // max_data view as [n, 1, remain]
  // blockDim = n * remain, split blockIdx to idx_n and idx_remain
669 670 671 672 673
  int64_t remain = d / axis_dim;
  int64_t idx_n = blockIdx.x / remain;
  int64_t idx_remain = blockIdx.x % remain;
  int64_t beg_idx = idx_n * d + threadIdx.x * remain + idx_remain;
  int64_t end_idx = (idx_n + 1) * d;
S
sneaxiy 已提交
674 675

  auto block_max = max_data[blockIdx.x];
676
  int64_t step = BlockDim * remain;
S
sneaxiy 已提交
677

678 679 680 681 682 683
  // In numeric stable mode softmax_with_loss, we calc loss with
  // tmp_i_j = x_i_j - max_i - logDiffMaxSum_i, instead of
  // log(exp(x_i_j - max_i)/DiffMaxSum_i). Therefore, log(0) will not occur.
  // Also we calc softmax_i_j = e^{tmp_i_j}, the maximum and minimum value will
  // be 1.0 and 0.0, represent prob is 1.0 and 0.0.
  // So there is no need to clip on shift_softmax.
S
sneaxiy 已提交
684
  softmax[beg_idx] = logits_data[beg_idx] - block_max;
685
  T diff_max_sum = exp_on_device(softmax[beg_idx]);
686
  auto idx = beg_idx + step;
S
sneaxiy 已提交
687 688
  while (idx < end_idx) {
    softmax[idx] = logits_data[idx] - block_max;
689
    diff_max_sum += exp_on_device(softmax[idx]);
690
    idx += step;
S
sneaxiy 已提交
691 692 693 694
  }

  diff_max_sum =
      BlockReduce<T, BlockDim>(temp_storage).Reduce(diff_max_sum, cub::Sum());
695
  if (threadIdx.x == 0) max_data[blockIdx.x] = log_on_device(diff_max_sum);
S
sneaxiy 已提交
696 697 698 699 700

  if (!CalculateLogSoftmax) return;
  __syncthreads();
  diff_max_sum = max_data[blockIdx.x];
  softmax[beg_idx] -= diff_max_sum;
701
  beg_idx += step;
S
sneaxiy 已提交
702 703
  while (beg_idx < end_idx) {
    softmax[beg_idx] -= diff_max_sum;
704
    beg_idx += step;
S
sneaxiy 已提交
705
  }
706 707 708 709

  // Note(zhiqiu): since different threads may use max_data[blockIdx.x] to
  // calculate diff_max_sum, __syncthreads() is needed here.
  __syncthreads();
S
sneaxiy 已提交
710
  if (threadIdx.x == 0) max_data[blockIdx.x] = 0;
S
sneaxiy 已提交
711 712
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
#ifdef __HIPCC__  // @{ HIP Seperate Kernel for RowReductionForDiffMaxSum
// Note(qili93): HIP do not support return in kernel, need to seperate
// RowReductionForDiffMaxSum into two kernels below
template <typename T, int BlockDim>
static __global__ void RowReductionForSum(const T* logits_data, T* max_data,
                                          T* softmax, int64_t d, int axis_dim) {
  __shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;

  int64_t remain = d / axis_dim;
  int64_t idx_n = blockIdx.x / remain;
  int64_t idx_remain = blockIdx.x % remain;
  int64_t beg_idx = idx_n * d + threadIdx.x * remain + idx_remain;
  int64_t end_idx = (idx_n + 1) * d;

  auto block_max = max_data[blockIdx.x];
  int64_t step = BlockDim * remain;

  softmax[beg_idx] = logits_data[beg_idx] - block_max;
  T diff_max_sum = exp_on_device(softmax[beg_idx]);
  auto idx = beg_idx + step;
  while (idx < end_idx) {
    softmax[idx] = logits_data[idx] - block_max;
    diff_max_sum += exp_on_device(softmax[idx]);
    idx += step;
  }

  diff_max_sum =
      BlockReduce<T, BlockDim>(temp_storage).Reduce(diff_max_sum, cub::Sum());
  if (threadIdx.x == 0) max_data[blockIdx.x] = log_on_device(diff_max_sum);
}

template <typename T, int BlockDim, bool CalculateLogSoftmax = false>
static __global__ void RowReductionForDiff(const T* logits_data, T* max_data,
                                           T* softmax, int d, int axis_dim) {
  int remain = d / axis_dim;
  int idx_n = blockIdx.x / remain;
  int idx_remain = blockIdx.x % remain;
  int beg_idx = idx_n * d + threadIdx.x * remain + idx_remain;
  int end_idx = (idx_n + 1) * d;
  int step = BlockDim * remain;

  T diff_max_sum = max_data[blockIdx.x];
  softmax[beg_idx] -= diff_max_sum;
  beg_idx += step;
  while (beg_idx < end_idx) {
    softmax[beg_idx] -= diff_max_sum;
    beg_idx += step;
  }

  __syncthreads();
  if (threadIdx.x == 0) max_data[blockIdx.x] = 0;
}
#endif  // @} End HIP Seperate Kernel for RowReductionForDiffMaxSum

767
// Make sure that BlockDim <= axis_dim
S
sneaxiy 已提交
768
template <typename T, int BlockDim>
S
sneaxiy 已提交
769
static __global__ void RowReductionForSoftmaxAndCrossEntropy(
770 771
    const T* logits_data, const T* labels_data, T* loss_data, T* softmax,
    int64_t d, int axis_dim) {
S
sneaxiy 已提交
772 773
  __shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;

774 775 776
  // logits, softmax, labels data view as [n, axis_dim, remain]
  // loss_data view as [n, 1, remain]
  // blockDim = n * remain, split blockIdx to idx_n and idx_remain
777 778 779 780 781
  int64_t remain = d / axis_dim;
  int64_t idx_n = blockIdx.x / remain;
  int64_t idx_remain = blockIdx.x % remain;
  int64_t beg_idx = idx_n * d + threadIdx.x * remain + idx_remain;
  int64_t end_idx = (idx_n + 1) * d;
S
sneaxiy 已提交
782 783 784 785

  // log_diff_max_sum shares memory with loss
  auto block_log_diff_max_sum = loss_data[blockIdx.x];
  auto tmp = softmax[beg_idx] - block_log_diff_max_sum;
786
  softmax[beg_idx] = exp_on_device(tmp);
S
sneaxiy 已提交
787
  auto loss = -labels_data[beg_idx] * tmp;
788
  int64_t step = BlockDim * remain;
789
  beg_idx += step;
S
sneaxiy 已提交
790 791
  while (beg_idx < end_idx) {
    tmp = softmax[beg_idx] - block_log_diff_max_sum;
792
    softmax[beg_idx] = exp_on_device(tmp);
S
sneaxiy 已提交
793
    loss -= (labels_data[beg_idx] * tmp);
794
    beg_idx += step;
S
sneaxiy 已提交
795 796 797 798 799 800
  }

  loss = BlockReduce<T, BlockDim>(temp_storage).Reduce(loss, cub::Sum());
  if (threadIdx.x == 0) loss_data[blockIdx.x] = loss;
}

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
// Make sure that BlockDim <= axis_dim
template <typename T, int BlockDim>
static __global__ void RowReductionForCrossEntropy(const T* logits_data,
                                                   const T* labels_data,
                                                   T* loss_data, int d,
                                                   int axis_dim) {
  __shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;

  // logits, softmax, labels data view as [n, axis_dim, remain]
  // loss_data view as [n, 1, remain]
  // blockDim = n * remain, split blockIdx to idx_n and idx_remain
  int remain = d / axis_dim;
  int idx_n = blockIdx.x / remain;
  int idx_remain = blockIdx.x % remain;
  int beg_idx = idx_n * d + threadIdx.x * remain + idx_remain;
  int end_idx = (idx_n + 1) * d;

  // log_diff_max_sum shares memory with loss
  auto block_log_diff_max_sum = loss_data[blockIdx.x];
  auto tmp = log_on_device(logits_data[beg_idx]);  // when not with softmax,
                                                   // softmax is stored in
                                                   // logits_data
  auto loss = -labels_data[beg_idx] * tmp;
  int step = BlockDim * remain;
  beg_idx += step;
  while (beg_idx < end_idx) {
    tmp = log_on_device(logits_data[beg_idx]);  // when not with softmax,
                                                // softmax is stored in
                                                // logits_data
    loss -= (labels_data[beg_idx] * tmp);
    beg_idx += step;
  }

  loss = BlockReduce<T, BlockDim>(temp_storage).Reduce(loss, cub::Sum());
  if (threadIdx.x == 0) loss_data[blockIdx.x] = loss;
}

S
sneaxiy 已提交
838
template <typename T>
839 840
static void SoftmaxWithCrossEntropyFusedKernel(
    const T* logits_data, const T* labels_data, T* softmax_data, T* loss_data,
841
    int64_t n, int64_t d, int axis_dim, gpuStream_t stream) {
842 843 844
#ifdef __HIPCC__
  constexpr int kMaxBlockDim = 256;
#else
S
sneaxiy 已提交
845
  constexpr int kMaxBlockDim = 512;
846
#endif
847 848 849 850
  int64_t block_dim = axis_dim >= kMaxBlockDim
                          ? kMaxBlockDim
                          : (1 << static_cast<int>(std::log2(axis_dim)));
  int64_t grid_dim = n * d / axis_dim;
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
#ifdef __HIPCC__
#define CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(BlockDim)                 \
  case BlockDim:                                                               \
    hipLaunchKernelGGL(HIP_KERNEL_NAME(RowReductionForMax<T, BlockDim>),       \
                       dim3(grid_dim), dim3(BlockDim), 0, stream, logits_data, \
                       loss_data, d, axis_dim);                                \
    hipLaunchKernelGGL(HIP_KERNEL_NAME(RowReductionForSum<T, BlockDim>),       \
                       dim3(grid_dim), dim3(BlockDim), 0, stream, logits_data, \
                       loss_data, softmax_data, d, axis_dim);                  \
    hipLaunchKernelGGL(                                                        \
        HIP_KERNEL_NAME(RowReductionForSoftmaxAndCrossEntropy<T, BlockDim>),   \
        dim3(grid_dim), dim3(BlockDim), 0, stream, logits_data, labels_data,   \
        loss_data, softmax_data, d, axis_dim);                                 \
    break
#else
866 867 868 869 870 871 872 873 874
#define CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(BlockDim)                 \
  case BlockDim:                                                               \
    RowReductionForMax<T, BlockDim><<<grid_dim, BlockDim, 0, stream>>>(        \
        logits_data, loss_data, d, axis_dim);                                  \
    RowReductionForDiffMaxSum<T, BlockDim><<<grid_dim, BlockDim, 0, stream>>>( \
        logits_data, loss_data, softmax_data, d, axis_dim);                    \
    RowReductionForSoftmaxAndCrossEntropy<                                     \
        T, BlockDim><<<grid_dim, BlockDim, 0, stream>>>(                       \
        logits_data, labels_data, loss_data, softmax_data, d, axis_dim);       \
S
sneaxiy 已提交
875
    break
876
#endif
S
sneaxiy 已提交
877 878 879 880 881 882 883 884 885 886 887 888

  switch (block_dim) {
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(512);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(256);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(128);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(64);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(32);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(16);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(8);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(4);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(2);
    default:
889 890
      PADDLE_THROW(platform::errors::Unavailable(
          "Block Dimension must be 2^n in softmax_with_cross_entropy_op."));
S
sneaxiy 已提交
891 892 893 894 895 896
      break;
  }

#undef CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL
}

897 898 899 900
// not with softmax
template <typename T>
static void CrossEntropyFusedKernel(const T* logits_data, const T* labels_data,
                                    T* loss_data, int n, int d, int axis_dim,
901
                                    gpuStream_t stream) {
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
  constexpr int kMaxBlockDim = 512;
  int block_dim = axis_dim >= kMaxBlockDim
                      ? kMaxBlockDim
                      : (1 << static_cast<int>(std::log2(axis_dim)));
  int grid_dim = n * d / axis_dim;

#define CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(BlockDim)                \
  case BlockDim:                                                              \
    RowReductionForCrossEntropy<T,                                            \
                                BlockDim><<<grid_dim, BlockDim, 0, stream>>>( \
        logits_data, labels_data, loss_data, d, axis_dim);                    \
    break

  switch (block_dim) {
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(512);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(256);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(128);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(64);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(32);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(16);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(8);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(4);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(2);
    default:
      PADDLE_THROW(platform::errors::Unavailable(
          "Block Dimension must be 2^n in softmax_with_cross_entropy_op."));
      break;
  }

#undef CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL
}

C
caoying03 已提交
934
template <typename T>
Y
Yu Yang 已提交
935
class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel<T> {
C
caoying03 已提交
936 937
 public:
  void Compute(const framework::ExecutionContext& context) const override {
938 939 940 941
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(context.GetPlace()), true,
        platform::errors::Unavailable("softmax_with_cross_entropy operator's "
                                      "CUDA kernel only runs on GPU device."));
942
    const bool use_softmax = context.Attr<bool>("use_softmax");
943 944

    // do not with softmax op, and input is softmax
945
    if (!use_softmax) {
946 947 948 949 950 951 952
      const Tensor* softmax = context.Input<Tensor>("Logits");
      const Tensor* labels = context.Input<Tensor>("Label");
      Tensor* softmax_out = context.Output<Tensor>("Softmax");
      Tensor* loss = context.Output<Tensor>("Loss");

      const int rank = softmax->dims().size();
      const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
953
      const int axis_dim = softmax->dims()[axis];
954 955 956 957 958 959 960

      const int n = SizeToAxis(axis, softmax->dims());
      const int d = SizeFromAxis(axis, softmax->dims());

      auto* softmax_out_data = softmax_out->mutable_data<T>(context.GetPlace());
      auto* loss_data = loss->mutable_data<T>(context.GetPlace());

961 962
      math::SetConstant<platform::CUDADeviceContext, T> set_constant;
      set_constant(context.cuda_device_context(), loss, static_cast<T>(0));
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
      if (axis_dim == 1) {
        set_constant(context.cuda_device_context(), softmax_out,
                     static_cast<T>(1));
        return;
      }

      auto soft_label = context.Attr<bool>("soft_label");
      auto ignore_index = context.Attr<int>("ignore_index");

      Tensor softmax_2d, labels_2d, loss_2d, softmax_out_2d;
      softmax_2d.ShareDataWith(*softmax).Resize({n, d});
      labels_2d.ShareDataWith(*labels).Resize({n, labels->numel() / n});
      loss_2d.ShareDataWith(*loss).Resize({n, 1});
      softmax_out_2d.ShareDataWith(*softmax_out).Resize({n, d});

      // math::CrossEntropyFunctor support axis is the last
      if (axis == -1) {
        math::CrossEntropyFunctor<platform::CUDADeviceContext, T>()(
            context.cuda_device_context(), &loss_2d, &softmax_2d, &labels_2d,
            soft_label, ignore_index, axis_dim);
        return;
      }

      // if axis is not the last, we need a new impliment
      if (soft_label) {
        auto* logits_data = softmax->data<T>();
        auto* labels_data = labels->data<T>();
        CrossEntropyFusedKernel(logits_data, labels_data, loss_data, n, d,
                                axis_dim,
                                context.cuda_device_context().stream());
      } else {  // HardLabel
        auto* logits_data = softmax->data<T>();
        auto* labels_data = labels->data<int64_t>();
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
        int threads = 128;
        int blocks = (n * d / axis_dim + threads - 1) / threads;
        if (ignore_index >= 0 && ignore_index < axis_dim) {
          CrossEntropyHardLabel<T, true><<<
              blocks, threads, 0, context.cuda_device_context().stream()>>>(
              loss_data, logits_data, labels_data, n, axis_dim, d / axis_dim,
              ignore_index);
        } else {
          CrossEntropyHardLabel<T, false><<<
              blocks, threads, 0, context.cuda_device_context().stream()>>>(
              loss_data, logits_data, labels_data, n, axis_dim, d / axis_dim,
              ignore_index);
        }
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
      }

      // cause of input is softmax
      // copy to output softmax, directly
      framework::TensorCopy(*softmax, context.GetPlace(),
                            context.device_context(), softmax_out);

      return;
    }

C
caoying03 已提交
1019
    const Tensor* logits = context.Input<Tensor>("Logits");
1020
    const Tensor* labels = context.Input<Tensor>("Label");
C
caoying03 已提交
1021
    Tensor* softmax = context.Output<Tensor>("Softmax");
1022
    Tensor* loss = context.Output<Tensor>("Loss");
1023 1024 1025 1026 1027

    const int rank = logits->dims().size();
    const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
    int axis_dim = logits->dims()[axis];

1028 1029
    const int64_t n = SizeToAxis(axis, logits->dims());
    const int64_t d = SizeFromAxis(axis, logits->dims());
1030 1031 1032 1033

    auto* softmax_data = softmax->mutable_data<T>(context.GetPlace());
    auto* loss_data = loss->mutable_data<T>(context.GetPlace());

1034 1035 1036 1037 1038 1039 1040
    if (axis_dim == 1) {
      math::SetConstant<platform::CUDADeviceContext, T> set_constant;
      set_constant(context.cuda_device_context(), softmax, static_cast<T>(1));
      set_constant(context.cuda_device_context(), loss, static_cast<T>(0));
      return;
    }

S
sneaxiy 已提交
1041
    auto soft_label = context.Attr<bool>("soft_label");
1042
    auto ignore_index = context.Attr<int>("ignore_index");
1043

S
sneaxiy 已提交
1044 1045 1046 1047
    if (soft_label) {
      auto* logits_data = logits->data<T>();
      auto* labels_data = labels->data<T>();
      SoftmaxWithCrossEntropyFusedKernel(
1048 1049
          logits_data, labels_data, softmax_data, loss_data, n, d, axis_dim,
          context.cuda_device_context().stream());
S
sneaxiy 已提交
1050
    } else {
S
sneaxiy 已提交
1051
      if (!context.Attr<bool>("numeric_stable_mode")) {
1052 1053 1054 1055 1056 1057
        // CUDNN kernel only suppoer 2-D tensor and perfome softmax on last dim
        Tensor logits_2d, softmax_2d, labels_2d, loss_2d;
        logits_2d.ShareDataWith(*logits).Resize({n, d});
        softmax_2d.ShareDataWith(*softmax).Resize({n, d});
        labels_2d.ShareDataWith(*labels).Resize({n, labels->numel() / n});
        loss_2d.ShareDataWith(*loss).Resize({n, 1});
1058 1059
        math::SoftmaxCUDNNFunctor<T>()(context.cuda_device_context(),
                                       &logits_2d, &softmax_2d);
S
sneaxiy 已提交
1060
        math::CrossEntropyFunctor<platform::CUDADeviceContext, T>()(
1061
            context.cuda_device_context(), &loss_2d, &softmax_2d, &labels_2d,
1062
            false, ignore_index, axis_dim);
S
sneaxiy 已提交
1063 1064 1065
      } else {
        auto* logits_data = logits->data<T>();
        auto* labels_data = labels->data<int64_t>();
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
        if (ignore_index >= 0 && ignore_index < axis_dim) {
          SoftmaxWithCrossEntropyHardLabel<T, true>(
              context.cuda_device_context(), rank, axis, logits_data,
              labels_data, loss_data, softmax_data, n, axis_dim, d / axis_dim,
              ignore_index);
        } else {
          SoftmaxWithCrossEntropyHardLabel<T, false>(
              context.cuda_device_context(), rank, axis, logits_data,
              labels_data, loss_data, softmax_data, n, axis_dim, d / axis_dim,
              ignore_index);
        }
S
sneaxiy 已提交
1077
      }
S
sneaxiy 已提交
1078
    }
C
caoying03 已提交
1079 1080 1081 1082
  }
};

template <typename T>
Y
Yu Yang 已提交
1083
class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel<T> {
C
caoying03 已提交
1084 1085
 public:
  void Compute(const framework::ExecutionContext& context) const override {
1086 1087 1088 1089
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(context.GetPlace()), true,
        platform::errors::Unavailable("softmax_with_cross_entropy operator's "
                                      "CUDA kernel only runs on GPU device."));
1090 1091 1092
    const Tensor* labels = context.Input<Tensor>("Label");
    const T* loss_grad_data =
        context.Input<Tensor>(framework::GradVarName("Loss"))->data<T>();
C
caoying03 已提交
1093 1094
    Tensor* logit_grad =
        context.Output<Tensor>(framework::GradVarName("Logits"));
Z
Zeng Jinle 已提交
1095 1096 1097 1098 1099
    const Tensor* softmax = context.Input<Tensor>("Softmax");
    if (logit_grad != softmax) {
      framework::TensorCopy(*softmax, context.GetPlace(),
                            context.device_context(), logit_grad);
    }
C
caoying03 已提交
1100 1101
    T* logit_grad_data = logit_grad->data<T>();

1102 1103 1104 1105
    const int rank = logit_grad->dims().size();
    const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
    int axis_dim = logit_grad->dims()[axis];

1106 1107 1108
    const int64_t n = SizeToAxis(axis, logit_grad->dims());
    const int64_t d = SizeFromAxis(axis, logit_grad->dims());
    const int64_t remain = d / axis_dim;
1109

1110
    int block = 512;
1111
    auto stream = context.cuda_device_context().stream();
1112
    auto ignore_index = context.Attr<int>("ignore_index");
1113
    auto use_softmax = context.Attr<bool>("use_softmax");
1114 1115

    // do not with softmax op, and input is softmax
1116
    if (!use_softmax) {
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
      if (context.Attr<bool>("soft_label")) {
        int grid = (n * d + block - 1) / block;
        const T* label_data = labels->data<T>();
        SoftLabelCrossEntropyGradientKernel<T><<<grid, block, 0, stream>>>(
            logit_grad_data, loss_grad_data, label_data, n, d, remain);
      } else {
        Tensor logits_grad_2d;
        logits_grad_2d.ShareDataWith(*logit_grad).Resize({n, d});
        int grid = (n * remain + block - 1) / block;
        const int64_t* label_data = labels->data<int64_t>();
        HardLabelCrossEntropyGradientKernel<T><<<grid, block, 0, stream>>>(
            logit_grad_data, label_data, n, d, remain, ignore_index);
        int num = n * d;
        grid = (num + block - 1) / block;
        ScaleCrossEntropyGradient<T><<<grid, block, 0, stream>>>(
            logit_grad_data, loss_grad_data, num, d, remain, label_data,
            ignore_index);
      }

      return;
    }

    // with softmax, continue

1141
    if (context.Attr<bool>("soft_label")) {
1142
      int64_t grid = (n * d + block - 1) / block;
1143
      const T* label_data = labels->data<T>();
1144
      SoftCrossEntropyGradientKernel<T><<<grid, block, 0, stream>>>(
1145
          logit_grad_data, loss_grad_data, label_data, n, d, remain);
1146
    } else {
C
caoying03 已提交
1147
      const int64_t* label_data = labels->data<int64_t>();
1148 1149 1150 1151
      int grid = (n * d + block - 1) / block;
      SoftmaxWithCrossEntropyGradHardLabel<T><<<grid, block, 0, stream>>>(
          logit_grad_data, loss_grad_data, label_data, n, d / remain, remain,
          ignore_index);
1152
    }
C
caoying03 已提交
1153 1154 1155 1156 1157 1158 1159
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_CUDA_KERNEL(
    softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyCUDAKernel<float>,
    ops::SoftmaxWithCrossEntropyCUDAKernel<paddle::platform::float16>);
REGISTER_OP_CUDA_KERNEL(
    softmax_with_cross_entropy_grad,
    ops::SoftmaxWithCrossEntropyGradCUDAKernel<float>,
    ops::SoftmaxWithCrossEntropyGradCUDAKernel<paddle::platform::float16>);
#else
1170 1171 1172 1173 1174 1175 1176 1177 1178
REGISTER_OP_CUDA_KERNEL(
    softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyCUDAKernel<float>,
    ops::SoftmaxWithCrossEntropyCUDAKernel<paddle::platform::float16>,
    ops::SoftmaxWithCrossEntropyCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(
    softmax_with_cross_entropy_grad,
    ops::SoftmaxWithCrossEntropyGradCUDAKernel<float>,
    ops::SoftmaxWithCrossEntropyGradCUDAKernel<paddle::platform::float16>,
    ops::SoftmaxWithCrossEntropyGradCUDAKernel<double>);
1179
#endif