softmax_with_cross_entropy_op.cu 13.0 KB
Newer Older
S
sneaxiy 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

C
caoying03 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#define EIGEN_USE_GPU
C
caoying03 已提交
16

S
sneaxiy 已提交
17 18
#include <cub/cub.cuh>
#include "paddle/fluid/operators/math/cross_entropy.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/operators/softmax_with_cross_entropy_op.h"
20

C
caoying03 已提交
21 22 23 24 25
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

26
namespace {
C
caoying03 已提交
27
template <typename T>
28 29 30 31 32 33
__global__ void CrossEntropyGrad(T* logit_grad, const int64_t* labels,
                                 const int batch_size, const int class_num) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < batch_size;
       i += blockDim.x * gridDim.x) {
    int idx = i * class_num + labels[i];
    logit_grad[idx] -= static_cast<T>(1.);
Y
Yu Yang 已提交
34
  }
35
}
Y
Yu Yang 已提交
36

37 38 39 40 41 42
template <typename T>
__global__ void Scale(T* logit_grad, const T* loss_grad, const int num,
                      const int class_num) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num;
       i += blockDim.x * gridDim.x) {
    logit_grad[i] *= loss_grad[i / class_num];
43 44 45 46 47 48 49 50 51 52 53 54
  }
}

template <typename T>
__global__ void SoftCrossEntropyGradientKernel(T* logit_grad,
                                               const T* loss_grad,
                                               const T* labels,
                                               const int batch_size,
                                               const int class_num) {
  int ids = blockIdx.x * blockDim.x + threadIdx.x;
  if (ids < batch_size * class_num) {
    int row_ids = ids / class_num;
C
caoying03 已提交
55
    logit_grad[ids] = loss_grad[row_ids] * (logit_grad[ids] - labels[ids]);
C
caoying03 已提交
56
  }
C
caoying03 已提交
57
}
S
sneaxiy 已提交
58

59
}  // namespace
C
caoying03 已提交
60

S
sneaxiy 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
static __device__ __forceinline__ float real_exp(float x) { return expf(x); }
static __device__ __forceinline__ double real_exp(double x) { return exp(x); }
static __device__ __forceinline__ float real_log(float x) {
  return math::TolerableValue<float>()(logf(x));
}
static __device__ __forceinline__ double real_log(double x) {
  return math::TolerableValue<double>()(log(x));
}

/** In the following codes, 3 CUDA kernels are implemented to calculate softmax
 * and loss **/
/*
  Supposing the x is `logits` and y is `labels`, the equations are as
followings:

  cross\_entropy_i = \sum_{j}[- y_i_j * log({e^{x_i_j}/\sum_{j}e^{x_i_j}})]
        = \sum_{j}[- y_i_j * log({e^{x_i_j - max_i}/\sum_{j}e^{x_i_j-max_i}})]
        = \sum_{j}[-y_i_j * (x_i_j - max_i - log\sum_{j}e^{x_i_j - max_i})]
        = \sum_{j}[-y_i_j * (x_i_j - max_i - logDiffMaxSum_i)]
        = \sum_{j}(-y_i_j * tmp_i_j)

  softmax_i_j = e^{tmp_i_j}

where:
  max_i = \max_{j}{x_i_j}
  logDiffMaxSum_i = log\sum_{j}e^{x_i_j - max_i}
  tmp_i_j = x_i_j - max_i - logDiffMaxSum_i

Therefore, the calculation can be separated into 3 steps:
Step 1: row-wise operation to calculate max_i
Step 2: row-wise operation to calculate logDiffMaxSum_i
Step 3: caculate tmp_i_j, and finally get softmax_i_j and cross\_entropy_i

To save memory, we can share memory among max_i, logDiffMaxSum_i and
cross\_entropy_i.
In this way, the 3 steps should be changed to:
Step 1 (RowReductionForMax): row-wise operation to calculate max_i
Step 2 (RowReductionForDiffMaxSum): calculate immediate result of softmax'_i_j =
x_i_j - max_i, and row-wise operation to calculate logDiffMaxSum_i
Step 3 (RowReductionForSoftmaxAndCrossEntropy): calculate tmp_i_j = softmax'_i_j
- logDiffMaxSum_i, and finally get softmax_i_j and cross\_entropy_i
*/

// There are 3 kinds of reduce algorithms in cub:
// BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY
// BLOCK_REDUCE_RAKING
// BLOCK_REDUCE_WARP_REDUCTIONS (default)
template <typename T, int BlockDim>
using BlockReduce =
    cub::BlockReduce<T, BlockDim /*, cub::BLOCK_REDUCE_WARP_REDUCTIONS*/>;

template <typename T, int BlockDim>
using BlockReduceTempStorage = typename BlockReduce<T, BlockDim>::TempStorage;

// Make sure that BlockDim <= feature_size
// This kernel is used to calculate the max element of each row
template <typename T, int BlockDim>
__global__ void RowReductionForMax(const T* logits_data, T* max_data,
                                   int feature_size) {
  __shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;

  auto beg_idx = feature_size * blockIdx.x + threadIdx.x;
  auto end_idx = feature_size * (blockIdx.x + 1);

  T cur_max = logits_data[beg_idx];
  beg_idx += BlockDim;
  while (beg_idx < end_idx) {
    if (cur_max < logits_data[beg_idx]) {
      cur_max = logits_data[beg_idx];
    }
    beg_idx += BlockDim;
  }

  cur_max = BlockReduce<T, BlockDim>(temp_storage).Reduce(cur_max, cub::Max());

  if (threadIdx.x == 0) {
    max_data[blockIdx.x] = cur_max < -64 ? -64 : cur_max;
  }
}

// Make sure that BlockDim <= feature_size
template <typename T, int BlockDim>
__global__ void RowReductionForDiffMaxSum(const T* logits_data, T* max_data,
                                          T* softmax, int feature_size) {
  __shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;

  auto beg_idx = feature_size * blockIdx.x + threadIdx.x;
  auto end_idx = feature_size * (blockIdx.x + 1);

  auto block_max = max_data[blockIdx.x];

  softmax[beg_idx] = logits_data[beg_idx] - block_max;
  T diff_max_sum = real_exp(softmax[beg_idx]);
  beg_idx += BlockDim;
  while (beg_idx < end_idx) {
    softmax[beg_idx] = logits_data[beg_idx] - block_max;
    diff_max_sum += real_exp(softmax[beg_idx]);
    beg_idx += BlockDim;
  }

  diff_max_sum =
      BlockReduce<T, BlockDim>(temp_storage).Reduce(diff_max_sum, cub::Sum());
  if (threadIdx.x == 0) max_data[blockIdx.x] = real_log(diff_max_sum);
}

// Make sure that BlockDim <= feature_size
template <typename T, int BlockDim>
__global__ void RowReductionForSoftmaxAndCrossEntropy(const T* logits_data,
                                                      const T* labels_data,
                                                      T* loss_data, T* softmax,
                                                      int feature_size) {
  __shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;

  auto beg_idx = feature_size * blockIdx.x + threadIdx.x;
  auto end_idx = feature_size * (blockIdx.x + 1);

  // log_diff_max_sum shares memory with loss
  auto block_log_diff_max_sum = loss_data[blockIdx.x];
  auto tmp = softmax[beg_idx] - block_log_diff_max_sum;
  softmax[beg_idx] = real_exp(tmp);
  auto loss = -labels_data[beg_idx] * tmp;
  beg_idx += BlockDim;
  while (beg_idx < end_idx) {
    tmp = softmax[beg_idx] - block_log_diff_max_sum;
    softmax[beg_idx] = real_exp(tmp);
    loss -= (labels_data[beg_idx] * tmp);
    beg_idx += BlockDim;
  }

  loss = BlockReduce<T, BlockDim>(temp_storage).Reduce(loss, cub::Sum());
  if (threadIdx.x == 0) loss_data[blockIdx.x] = loss;
}

template <typename T>
__global__ void SetSoftmaxToOneWhenFeatureSizeIsOne(T* out, int batch_size) {
  auto idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < batch_size) out[idx] = static_cast<T>(1);
}

template <typename T>
static void SoftmaxWithCrossEntropyFusedKernel(const T* logits_data,
                                               const T* labels_data,
                                               T* softmax_data, T* loss_data,
                                               int batch_size, int feature_size,
                                               cudaStream_t stream) {
  constexpr int kMaxBlockDim = 512;
  int block_dim = feature_size >= kMaxBlockDim
                      ? kMaxBlockDim
                      : (1 << static_cast<int>(std::log2(feature_size)));

#define CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(BlockDim)                \
  case BlockDim:                                                              \
    RowReductionForMax<T, BlockDim><<<batch_size, BlockDim, 0, stream>>>(     \
        logits_data, loss_data, feature_size);                                \
    RowReductionForDiffMaxSum<T,                                              \
                              BlockDim><<<batch_size, BlockDim, 0, stream>>>( \
        logits_data, loss_data, softmax_data, feature_size);                  \
    RowReductionForSoftmaxAndCrossEntropy<                                    \
        T, BlockDim><<<batch_size, BlockDim, 0, stream>>>(                    \
        logits_data, labels_data, loss_data, softmax_data, feature_size);     \
    break

  switch (block_dim) {
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(512);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(256);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(128);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(64);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(32);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(16);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(8);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(4);
    CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(2);
    case 1:
      SetSoftmaxToOneWhenFeatureSizeIsOne<<<(batch_size + kMaxBlockDim - 1) /
                                                kMaxBlockDim,
                                            kMaxBlockDim, 0, stream>>>(
          softmax_data, batch_size);
      cudaMemsetAsync(loss_data, 0, batch_size, stream);
      break;
    default:
      PADDLE_THROW("BlockDim must be 2^n in softmax_with_cross_entropy_op");
      break;
  }

#undef CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL
}

C
caoying03 已提交
248
template <typename T>
Y
Yu Yang 已提交
249
class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel<T> {
C
caoying03 已提交
250 251 252 253 254
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
                   "This kernel only runs on GPU device.");
    const Tensor* logits = context.Input<Tensor>("Logits");
255
    const Tensor* labels = context.Input<Tensor>("Label");
C
caoying03 已提交
256 257
    Tensor* softmax = context.Output<Tensor>("Softmax");

258
    Tensor* loss = context.Output<Tensor>("Loss");
S
sneaxiy 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    auto* softmax_data = softmax->mutable_data<T>(context.GetPlace());
    auto* loss_data = loss->mutable_data<T>(context.GetPlace());

    auto soft_label = context.Attr<bool>("soft_label");
    if (soft_label) {
      int batch_size = logits->dims()[0];
      int feature_size = logits->dims()[1];
      auto* logits_data = logits->data<T>();
      auto* labels_data = labels->data<T>();
      SoftmaxWithCrossEntropyFusedKernel(
          logits_data, labels_data, softmax_data, loss_data, batch_size,
          feature_size, context.cuda_device_context().stream());
    } else {
      math::SoftmaxCUDNNFunctor<T>()(context.cuda_device_context(), logits,
                                     softmax);
      math::CrossEntropyFunctor<platform::CUDADeviceContext, T>()(
          context.cuda_device_context(), loss, softmax, labels, false);
    }
C
caoying03 已提交
277 278 279 280
  }
};

template <typename T>
Y
Yu Yang 已提交
281
class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel<T> {
C
caoying03 已提交
282 283 284 285
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
                   "This kernel only runs on GPU device.");
286 287 288
    const Tensor* labels = context.Input<Tensor>("Label");
    const T* loss_grad_data =
        context.Input<Tensor>(framework::GradVarName("Loss"))->data<T>();
C
caoying03 已提交
289 290
    Tensor* logit_grad =
        context.Output<Tensor>(framework::GradVarName("Logits"));
291
    logit_grad->ShareDataWith(*context.Input<Tensor>("Softmax"));
C
caoying03 已提交
292 293 294 295
    T* logit_grad_data = logit_grad->data<T>();

    const int batch_size = logit_grad->dims()[0];
    const int class_num = logit_grad->dims()[1];
296
    int block = 512;
297
    auto stream = context.cuda_device_context().stream();
298

299
    if (context.Attr<bool>("soft_label")) {
300
      int grid = (batch_size * class_num + block - 1) / block;
301
      const T* label_data = labels->data<T>();
302 303
      SoftCrossEntropyGradientKernel<T><<<grid, block, 0, stream>>>(
          logit_grad_data, loss_grad_data, label_data, batch_size, class_num);
304
    } else {
305
      int grid = (batch_size + block - 1) / block;
C
caoying03 已提交
306
      const int64_t* label_data = labels->data<int64_t>();
307 308 309 310 311 312
      CrossEntropyGrad<T><<<grid, block, 0, stream>>>(
          logit_grad_data, label_data, batch_size, class_num);
      int num = batch_size * class_num;
      grid = (num + block - 1) / block;
      Scale<T><<<grid, block, 0, stream>>>(logit_grad_data, loss_grad_data, num,
                                           class_num);
313
    }
C
caoying03 已提交
314 315 316 317 318 319 320
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Q
QI JUN 已提交
321 322 323 324 325 326
REGISTER_OP_CUDA_KERNEL(softmax_with_cross_entropy,
                        ops::SoftmaxWithCrossEntropyCUDAKernel<float>,
                        ops::SoftmaxWithCrossEntropyCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(softmax_with_cross_entropy_grad,
                        ops::SoftmaxWithCrossEntropyGradCUDAKernel<float>,
                        ops::SoftmaxWithCrossEntropyGradCUDAKernel<double>);