binary.cc 58.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/infermeta/binary.h"
16 17 18 19

#include <algorithm>
#include <vector>
#include "paddle/phi/common/data_type.h"
20
#include "paddle/phi/common/layout.h"
21
#include "paddle/phi/core/ddim.h"
22
#include "paddle/phi/core/infermeta_utils.h"
23
#include "paddle/phi/kernels/cpu/conv_util.h"
24
#include "paddle/phi/kernels/funcs/common_shape.h"
25

H
hong 已提交
26 27
#include "paddle/phi/kernels/cpu/conv_util.h"

28
namespace phi {
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
namespace detail {

static void BinarySameInputDimsCheck(const MetaTensor& x,
                                     const MetaTensor& y,
                                     MetaConfig config) {
  auto input_dim = x.dims();
  auto other_dim = y.dims();
  PADDLE_ENFORCE_EQ(input_dim.size(),
                    other_dim.size(),
                    phi::errors::PreconditionNotMet(
                        "Input(Input) and Input(Other) must have the same "
                        "dimension size."));
  int n = input_dim.size();
  bool is_runtime = config.is_runtime;
  for (int i = 0; i < n; i++) {
    if (is_runtime) {
      PADDLE_ENFORCE_EQ(input_dim[i],
                        other_dim[i],
                        phi::errors::PreconditionNotMet(
                            "The value at dim %d of Input(Input) is not "
                            "equal to the Input(Other): %ld != %ld.",
                            i,
                            input_dim[i],
                            other_dim[i]));
    } else {
      if (!(input_dim[i] < 0 || other_dim[i] < 0)) {
        PADDLE_ENFORCE_EQ(input_dim[i],
                          other_dim[i],
                          phi::errors::PreconditionNotMet(
                              "The value at dim %d of Input(Input) is not "
                              "equal to the Input(Other): %ld != %ld.",
                              i,
                              input_dim[i],
                              other_dim[i]));
      }
    }
  }
}

}  // namespace detail

void AllValueCompareInferMeta(const MetaTensor& x,
                              const MetaTensor& y,
                              MetaTensor* out,
                              MetaConfig config) {
  detail::BinarySameInputDimsCheck(x, y, config);

  out->set_dims(phi::make_ddim({1}));
  out->set_dtype(DataType::BOOL);
}
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
void KLDivInferMeta(const MetaTensor& x,
                    const MetaTensor& label,
                    const std::string& reduction,
                    MetaTensor* out,
                    MetaConfig config) {
  auto dim_x = x.dims();
  auto dim_target = label.dims();
  PADDLE_ENFORCE_EQ(dim_x.size(),
                    dim_target.size(),
                    phi::errors::InvalidArgument(
                        "Input(X) rank and Input(Target) rank should be "
                        "same, but received X rank(%d) != Target rank(%d)",
                        dim_x.size(),
                        dim_target.size()));
  for (int i = 0; i < dim_x.size(); i++) {
    if (config.is_runtime || (dim_x[i] > 0 && dim_target[i] > 0)) {
      PADDLE_ENFORCE_EQ(
          dim_x[i],
          dim_target[i],
          phi::errors::InvalidArgument(
              "Input(X) and Input(Target) should in same shape. but received "
              "X dimension[%d](%d) != Target dimension[%d](%d)",
              i,
              dim_x[i],
              i,
              dim_target[i]));
    }
  }

  auto reduction_valid = "mean" == reduction || "sum" == reduction ||
                         "batchmean" == reduction || "none" == reduction;
  PADDLE_ENFORCE_EQ(
      reduction_valid,
      true,
      phi::errors::InvalidArgument(
          "Attr(reduction) can only be 'none'|'batchmean'|'sum'|'mean'."));

  if ("none" == reduction) {
    out->set_dims(dim_x);
  } else {
    out->set_dims({1});
  }
  out->set_dtype(x.dtype());
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
void Atan2InferMeta(const MetaTensor& x, const MetaTensor& y, MetaTensor* out) {
  out->share_meta(x);
}

void BCELossInferMeta(const MetaTensor& input,
                      const MetaTensor& label,
                      MetaTensor* out,
                      MetaConfig config) {
  auto input_dims = input.dims();
  auto label_dims = label.dims();

  int rank = input_dims.size();
  PADDLE_ENFORCE_EQ(rank,
                    label_dims.size(),
                    phi::errors::InvalidArgument(
                        "Input(X) and Input(Label) shall have the same rank."
                        "But received: the rank of Input(X) is [%d], "
                        "the rank of Input(Label) is [%d].",
                        rank,
                        label_dims.size()));

  bool check = true;
  if ((!config.is_runtime) &&
      (phi::product(input_dims) <= 0 || phi::product(label_dims) <= 0)) {
    check = false;
  }

  if (check) {
    PADDLE_ENFORCE_EQ(input_dims,
                      label_dims,
                      phi::errors::InvalidArgument(
                          "Input(X) and Input(Label) shall have the same "
                          "shape. But received: the shape of Input(X) is "
                          "[%s], the shape of Input(Label) is [%s].",
                          input_dims,
                          label_dims));
  }

  out->set_dims(input_dims);
  out->set_dtype(input.dtype());
  out->share_lod(input);
}

void BincountInferMeta(const MetaTensor& x,
                       const paddle::optional<const MetaTensor&> weights,
                       int minlength,
                       MetaTensor* out) {
  auto input_dim = x.dims();

  PADDLE_ENFORCE_GE(minlength,
                    0,
                    phi::errors::InvalidArgument(
                        "The minlength should be greater than or equal to 0."
                        "But received minlength is %d",
                        minlength));

  PADDLE_ENFORCE_EQ(
      input_dim.size(),
      1,
      phi::errors::InvalidArgument("The 'shape' of Input(X) must be 1-D tensor."
                                   "But the dimension of Input(X) is [%d]",
                                   input_dim.size()));

  if (weights.is_initialized()) {
    auto weights_dim = weights->dims();
    PADDLE_ENFORCE_EQ(weights_dim.size(),
                      1,
                      phi::errors::InvalidArgument(
                          "The 'shape' of Input(Weights) must be 1-D tensor."
                          "But the dimension of Input(Weights) is [%d]",
                          weights_dim.size()));

    PADDLE_ENFORCE_EQ(
        weights_dim[0],
        input_dim[0],
        phi::errors::InvalidArgument(
            "The 'shape' of Input(Weights) must be equal to the 'shape' of "
            "Input(X)."
            "But received: the 'shape' of Input(Weights) is [%s],"
            "the 'shape' of Input(X) is [%s]",
            weights_dim,
            input_dim));
  }
  out->set_dims(phi::make_ddim({-1}));
  if (weights.is_initialized()) {
    out->set_dtype(weights->dtype());
  } else {
    out->set_dtype(x.dtype());
  }

  out->share_lod(x);
}

void CholeskySolveInferMeta(const MetaTensor& x,
                            const MetaTensor& y,
                            bool upper,
                            MetaTensor* out) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  auto x_dims_n = x_dims.size();
  auto y_dims_n = y_dims.size();

  PADDLE_ENFORCE_GE(x_dims_n,
                    2,
                    phi::errors::InvalidArgument(
                        "the rank of input Y must greater or equal to 2"));
  PADDLE_ENFORCE_GE(y_dims_n,
                    2,
                    phi::errors::InvalidArgument(
                        "the rank of input X must greater or equal to 2"));
  PADDLE_ENFORCE_EQ(
      y_dims[y_dims_n - 1],
      y_dims[y_dims_n - 2],
      phi::errors::InvalidArgument("input Matrix Y should be square matrix,"
                                   "But Got last shape of %ld x %ld",
                                   y_dims[y_dims_n - 1],
                                   y_dims[y_dims_n - 2]));
  PADDLE_ENFORCE_EQ(
      x_dims[x_dims_n - 2],
      y_dims[y_dims_n - 2],
      phi::errors::InvalidArgument("the first dim of Matrix X must be equal to "
                                   "the fisrt dim of Matrix Y,"
                                   "But Got %ld and %ld",
                                   x_dims[x_dims_n - 2],
                                   y_dims[y_dims_n - 2]));

  std::vector<int64_t> x_dims_vec = phi::vectorize(x_dims);
  std::vector<int64_t> y_dims_vec = phi::vectorize(y_dims);

  std::vector<int64_t> x_dims_vec_cut(x_dims_vec.begin(), x_dims_vec.end() - 2);
  std::vector<int64_t> y_dims_vec_cut(y_dims_vec.begin(), y_dims_vec.end() - 2);

  std::vector<int64_t> expand_batch_portion =
      funcs::MatrixGetBroadcastBatchPortion(x_dims_vec_cut, y_dims_vec_cut);

  std::vector<int64_t> x_broadcast_dims({expand_batch_portion});
  x_broadcast_dims.insert(x_broadcast_dims.end(),
                          {x_dims_vec[x_dims_n - 2], x_dims_vec[x_dims_n - 1]});

  // dim of 'out' is the same with 'X' after broadcast
  out->set_dims(phi::make_ddim(x_broadcast_dims));
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
void CompareInferMeta(const MetaTensor& x,
                      const MetaTensor& y,
                      int axis,
                      MetaTensor* out) {
  auto dim_x = x.dims();
  auto dim_y = y.dims();

  if (dim_x == dim_y) {
    out->share_meta(x);
  } else {
    int max_dim = std::max(dim_x.size(), dim_y.size());
    int axis = std::abs(dim_x.size() - dim_y.size());
    std::vector<int> x_dims_array(max_dim);
    std::vector<int> y_dims_array(max_dim);
    std::vector<int> out_dims_array(max_dim);
    funcs::GetBroadcastDimsArrays(dim_x,
                                  dim_y,
                                  x_dims_array.data(),
                                  y_dims_array.data(),
                                  out_dims_array.data(),
                                  max_dim,
                                  axis);

    out->set_dims(make_ddim(out_dims_array));
    out->share_lod(x);
  }

  out->set_dtype(DataType::BOOL);
}

void CompareAllInferMeta(const MetaTensor& x,
                         const MetaTensor& y,
                         MetaTensor* out) {
  auto dim_x = x.dims();
  auto dim_y = y.dims();
  PADDLE_ENFORCE_GE(
      dim_x.size(),
      dim_y.size(),
      errors::InvalidArgument(
          "The size of dim_y should not be greater than dim_x's."));
  out->share_lod(x);
  out->set_dims(make_ddim({1}));
  out->set_dtype(DataType::BOOL);
}

H
hong 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
void ConvInferMeta(const MetaTensor& input,
                   const MetaTensor& filter,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings_t,
                   const std::string& padding_algorithm,
                   int groups,
                   const std::vector<int>& dilations_t,
                   const std::string& data_format,
                   bool use_addto,
                   int workspace_size_MB,
                   bool exhaustive_search,
                   MetaTensor* out,
                   MetaConfig config) {
  std::vector<int> paddings = paddings_t;
  std::vector<int> dilations = dilations_t;
  auto in_dims = input.dims();
  auto filter_dims = filter.dims();
  int dilation_size = dilations.size();
  for (int i = 0; i < dilation_size; ++i) {
    PADDLE_ENFORCE_GT(
        dilations[i],
        0,
        phi::errors::InvalidArgument(
            "The dilation of Op(Conv) should be larget than 0, but received "
            "dilation is %d.",
            dilations[i]));
  }
  const bool channel_last = (config.is_run_mkldnn_kernel == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");

  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5,
      true,
      phi::errors::InvalidArgument(
          "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
          in_dims.size(),
          in_dims));

  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      filter_dims.size(),
      phi::errors::InvalidArgument(
          "The input's dimension and filter's dimension of "
          "Op(Conv) should be equal. But received: the input's shape is [%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
          in_dims,
          in_dims.size(),
          filter_dims,
          filter_dims.size()));

  int stride_size = strides.size();
  for (int i = 0; i < stride_size; ++i) {
    PADDLE_ENFORCE_GT(
        strides[i],
        0,
        phi::errors::InvalidArgument(
            "The stride of Op(Conv) should be larget than 0, but received "
            "stride is %d.",
            strides[i]));
  }

  int in_sub_stride_size = in_dims.size() - stride_size;
  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      strides.size() + 2U,
      phi::errors::InvalidArgument(
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
          in_dims.size(),
          in_dims,
          strides.size(),
          phi::make_ddim(strides),
          in_sub_stride_size));

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];

  PADDLE_ENFORCE_EQ(
      input_channels,
      filter_dims[1] * groups,
      phi::errors::InvalidArgument(
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv). But received: the input's channels is %d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d, the data_format is %s. "
          "The error may come from wrong data_format setting.",
          input_channels,
          in_dims,
          filter_dims[1],
          filter_dims,
          groups,
          data_format));
  PADDLE_ENFORCE_EQ(
      filter_dims[0] % groups,
      0,
      phi::errors::InvalidArgument(
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
          filter_dims[0],
          filter_dims,
          groups));

  if (config.is_runtime) {
    PADDLE_ENFORCE_GT(
        filter_dims[0],
        0,
        phi::errors::InvalidArgument(
            "the size of filter at axis 0 should be greater than 0"));
  }

  DDim in_data_dims;
  if (channel_last) {
    in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
  }

  DDim filter_data_dims = phi::slice_ddim(filter_dims, 2, filter_dims.size());

  std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
  phi::UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
  for (int i = 0; i < in_data_dims.size(); ++i) {
    if ((!config.is_runtime) &&
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
      output_shape.push_back(-1);
    } else {
      const int dkernel = dilations[i] * (filter_data_dims[i] - 1) + 1;
      int output_size =
          (in_data_dims[i] + paddings[2 * i] + paddings[2 * i + 1] - dkernel) /
              strides[i] +
          1;
      output_shape.push_back(output_size);
    }
  }
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

  out->set_dims(make_ddim(output_shape));
  out->set_dtype(input.dtype());
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
void ConvTransposeInferMeta(const MetaTensor& x,
                            const MetaTensor& filter,
                            const std::vector<int>& strides,
                            const std::vector<int>& paddings,
                            const std::vector<int>& output_padding,
                            const std::vector<int>& output_size,
                            const std::string& padding_algorithm,
                            int groups,
                            const std::vector<int>& dilations,
                            const std::string& data_format,
                            MetaTensor* out,
                            MetaConfig config) {
  auto x_dims = x.dims();
  auto filter_dims = filter.dims();

  std::vector<int> paddings_ = paddings;
  std::vector<int> dilations_ = dilations;

  const DataLayout data_layout =
      config.is_run_mkldnn_kernel
          ? DataLayout::kNCHW
          : paddle::framework::StringToDataLayout(data_format);

  PADDLE_ENFORCE_EQ(
      x_dims.size() == 4 || x_dims.size() == 5,
      true,
      errors::InvalidArgument("Input of Op(conv_transpose) should be 4-D or "
                              "5-D Tensor. But received: %u-D Tensor, "
                              "the shape of input is [%s]",
                              x_dims.size(),
                              x_dims));
  PADDLE_ENFORCE_EQ(
      x_dims.size(),
      filter_dims.size(),
      errors::InvalidArgument(
          "The input's dimension size and filter's dimension size of "
          "Op (conv_transpose) should be equal. But received: the shape of "
          "input is [%s], the dimension size of input is [%d], the shape "
          "of filter is [%s],  the dimension size of filter is [%d]. ",
          x_dims,
          x_dims.size(),
          filter_dims,
          filter_dims.size()));

  int stride_size = strides.size();
  for (int i = 0; i < stride_size; ++i) {
    PADDLE_ENFORCE_GT(
        strides[i],
        0,
        errors::InvalidArgument(
            "The stride of Op(Conv) should be larget than 0, but received "
            "stride is %d.",
            strides[i]));
  }

  int in_sub_stride_size = x_dims.size() - stride_size;

  PADDLE_ENFORCE_EQ(
      x_dims.size() - strides.size(),
      2U,
      errors::InvalidArgument(
          "The input's dimension size minus Attr(stride)'s size must "
          "be euqal to 2 for Op(conv_transpose). But received: [%d], the "
          "input's dimension size is [%d], the shape of input "
          "is [%s], the Attr(stride)'s size is [%d].",
          in_sub_stride_size,
          x_dims.size(),
          x_dims,
          strides.size()));
  if (output_size.size())
    PADDLE_ENFORCE_EQ(
        output_size.size(),
        strides.size(),
        errors::InvalidArgument(
            "The Attr(output_size) and Attr(stride) of Op(conv_transpose) "
            "should be the same."));
  if (output_padding.size())
    PADDLE_ENFORCE_EQ(
        output_padding.size(),
        strides.size(),
        errors::InvalidArgument(
            "The Attr(output_padding) and Attr(stride) of Op(conv_transpose) "
            "should be the same."));

  const int64_t C =
      (data_layout != DataLayout::kNHWC ? x_dims[1]
                                        : x_dims[x_dims.size() - 1]);
  PADDLE_ENFORCE_EQ(
      C,
      filter_dims[0],
      errors::InvalidArgument(
          "The number of input channels should be equal to filter channels "
          "for Op(conv_transpose). But received: the input's channels is "
          "[%d], the shape of input is [%s], the filter's channels is [%d], "
          "the shape of filter is [%s]. The data_format is %s."
          "The error may come from wrong data_format setting.",
          C,
          x_dims,
          filter_dims[0],
          filter_dims,
          data_format));

  DDim x_data_dims;
  if (data_layout != DataLayout::kNHWC) {
    x_data_dims = slice_ddim(x_dims, 2, x_dims.size());
  } else {
    x_data_dims = slice_ddim(x_dims, 1, x_dims.size() - 1);
  }
  DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(
      &paddings_, &dilations_, padding_algorithm, x_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({x_dims[0]});
  if (data_layout != DataLayout::kNHWC) {
    output_shape.push_back(filter_dims[1] * groups);
  }
  const int offset = (data_layout != DataLayout::kNHWC ? 2 : 1);
  for (size_t i = 0; i < strides.size(); ++i) {
    auto filter_extent = dilations_[i] * (filter_dims[i + 2] - 1) + 1;
    auto infer_shape = (config.is_runtime || x_dims[i + offset] > 0)
                           ? (x_dims[i + offset] - 1) * strides[i] -
                                 paddings_[2 * i] - paddings_[2 * i + 1] +
                                 filter_extent
                           : -1;
    if (output_size.size()) {
      if (config.is_runtime) {
        PADDLE_ENFORCE_GE(
            output_size[i],
            infer_shape,
            errors::InvalidArgument(
                "output_size of Op(ConvTransposeOp) should not be "
                "less than the infered output size. But received output_size = "
                "[%s], whose dim %d is less than the infered output size [%s]",
                make_ddim(output_size).to_str(),
                i,
                infer_shape));
        PADDLE_ENFORCE_LT(
            output_size[i],
            infer_shape + strides[i],
            errors::InvalidArgument(
                "output_size of Op(ConvTransposeOp) should be less "
                "than infered size + stride. But received output_size = [%s], "
                "whose dim %d is not less than the infered output size (%d) + "
                "stride (%d) = %d",
                make_ddim(output_size).to_str(),
                i,
                infer_shape,
                strides[i],
                infer_shape + strides[i]));
      }
      output_shape.push_back(output_size[i]);
    } else if (output_padding.size()) {
      if (config.is_runtime) {
        PADDLE_ENFORCE_GE(
            output_padding[i],
            0,
            errors::InvalidArgument(
                "output_padding of Op(ConvTransposeOp) should not be "
                "less than the 0. But received output_padding = "
                "[%s], whose dim %d is less than 0",
                make_ddim(output_padding).to_str(),
                i));
        PADDLE_ENFORCE_LT(
            output_padding[i],
            std::max(strides[i], dilations_[i]),
            errors::InvalidArgument(
                "output_padding of Op(ConvTransposeOp) should be less "
                "than either stride or dilation. But received output_size = "
                "[%s], "
                "whose dim %d is not less than either stride (%d)  or "
                "dilation (%d)",
                make_ddim(output_size).to_str(),
                i,
                strides[i],
                dilations_[i]));
      }
      output_shape.push_back((infer_shape + output_padding[i]));
    } else {
      output_shape.push_back(infer_shape);
    }
  }
  if (data_layout == DataLayout::kNHWC) {
    output_shape.push_back(filter_dims[1] * groups);
  }

  out->set_dims(make_ddim(output_shape));
  out->set_dtype(x.dtype());
}

void CrossInferMeta(const MetaTensor& x,
                    const MetaTensor& y,
                    int axis,
                    MetaTensor* out) {
  auto x_dim = x.dims();
  auto y_dim = y.dims();
  auto dim = axis;

  bool dims_match = phi::funcs::CheckDims(x_dim, y_dim);
  PADDLE_ENFORCE_EQ(
      dims_match,
      true,
      phi::errors::InvalidArgument("The 'shape' of Input(X) should be equal to "
                                   "the 'shape' of Input(Y). But received "
                                   "Input(X).dimensions = [%s], "
                                   "Input(Y).dimensions = [%s]",
                                   x_dim,
                                   y_dim));

  if (dim != DDim::kMaxRank) {
    PADDLE_ENFORCE_EQ(
        dim < x_dim.size() && dim >= (0 - x_dim.size()),
        true,
        phi::errors::OutOfRange(
            "Attr(dim) is out of range, It's expected "
            "to be in range of [-%d, %d]. But received Attr(dim) = %d.",
            x_dim.size(),
            x_dim.size() - 1,
            dim));
    if (dim < 0) {
      dim += x_dim.size();
    }
    PADDLE_ENFORCE_EQ(x_dim[dim] == 3 && y_dim[dim] == 3,
                      true,
                      phi::errors::InvalidArgument(
                          "Input(X/Y).dims()[dim] should be equal to 3."
                          "But received Input(X/Y).dims()[dim] = %d.",
                          x_dim[dim]));
  }
  out->set_dims(x_dim);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
void DistInferMeta(const MetaTensor& x,
                   const MetaTensor& y,
                   float p,
                   MetaTensor* out) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  PADDLE_ENFORCE_NE(phi::product(x_dims),
                    0,
                    phi::errors::InvalidArgument(
                        "The Input(X) has not been initialized properly. The "
                        "shape of Input(X) = [%s].",
                        x_dims));
  PADDLE_ENFORCE_NE(phi::product(y_dims),
                    0,
                    phi::errors::InvalidArgument(
                        "The Input(Y) has not been initialized properly. The "
                        "shape of Input(Y) = [%s].",
                        y_dims));
  out->set_dims({1});
  out->set_dtype(x.dtype());
}

730 731
void DotInferMeta(const MetaTensor& x, const MetaTensor& y, MetaTensor* out) {
  auto x_dims = x.dims();
732 733 734
  auto x_rank = static_cast<size_t>(x_dims.size());
  PADDLE_ENFORCE_EQ(true,
                    1 == x_rank || 2 == x_rank,
735
                    phi::errors::PreconditionNotMet(
736 737 738 739
                        "ShapeError: The dimensions of input tensor X (%s) "
                        "should be 1 or 2",
                        x_dims.to_str()));

740
  auto y_dims = y.dims();
741 742
  PADDLE_ENFORCE_EQ(
      true,
743
      x_rank == static_cast<size_t>(y_dims.size()),
744
      phi::errors::PreconditionNotMet(
745 746 747 748 749 750 751 752 753 754 755 756 757 758
          "ShapeError: The shape of input tensor Y: %s should match with "
          "input tenosr X: %s",
          y_dims.to_str(),
          x_dims.to_str()));
  bool shape_match = true;
  for (size_t i = 0; i < x_rank; ++i) {
    if (x_dims[i] != y_dims[i]) {
      shape_match = false;
      break;
    }
  }

  PADDLE_ENFORCE_EQ(true,
                    shape_match,
759
                    phi::errors::PreconditionNotMet(
760 761 762 763 764 765 766
                        "ShapeError: The shape of input tensor X: %s should "
                        "be exactly the same "
                        "with input tensor Y: %s",
                        x_dims.to_str(),
                        y_dims.to_str()));

  x_dims[x_dims.size() - 1] = 1;
767 768 769
  out->set_dims(x_dims);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
770 771
}

772 773 774 775 776
void ElementwiseInferMeta(const MetaTensor& x,
                          const MetaTensor& y,
                          MetaTensor* out) {
  return ElementwiseRawInferMeta(x, y, -1, std::move(out));
}
777

778 779 780 781 782 783 784
void ElementwiseRawInferMeta(const MetaTensor& x,
                             const MetaTensor& y,
                             int axis,
                             MetaTensor* out) {
  if (x.dims() != y.dims()) {
    auto x_dims = x.dims();
    auto y_dims = y.dims();
785 786 787 788
    int max_dim = std::max(x_dims.size(), y_dims.size());
    if (x_dims.size() == y_dims.size()) {
      PADDLE_ENFORCE_EQ((axis == -1) || (axis == 0),
                        true,
789
                        phi::errors::InvalidArgument(
790 791 792 793 794 795 796 797 798
                            "axis should be -1 or 0 while the dimension of "
                            "tensor X (%s) is equal to the dimension of "
                            "tensor Y (%s), but received axis: %s",
                            x_dims.size(),
                            y_dims.size(),
                            axis));
    }
    PADDLE_ENFORCE_EQ((axis >= (-1 * max_dim)) && (axis < max_dim),
                      true,
799
                      phi::errors::InvalidArgument(
800 801 802 803 804 805 806 807 808 809
                          "The axis range must be [%s, %s), but axis is %s. "
                          "Please set the axis again.",
                          -1 * max_dim,
                          max_dim,
                          axis));
    axis = (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1)
                     : axis);
    std::vector<int> x_dims_array(max_dim);
    std::vector<int> y_dims_array(max_dim);
    std::vector<int> out_dims_array(max_dim);
810 811 812
    funcs::GetBroadcastDimsArrays(x_dims,
                                  y_dims,
                                  x_dims_array.data(),
813 814 815 816 817 818
                                  y_dims_array.data(),
                                  out_dims_array.data(),
                                  max_dim,
                                  axis);
    auto out_dims = phi::make_ddim(out_dims_array);
    out->set_dims(out_dims);
819
  } else {
820
    out->set_dims(x.dims());
821 822
  }

823
  out->set_dtype(x.dtype());
824 825
  out->set_layout(x.layout());
  out->share_lod(x);
826 827
}

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
void ExpandAsInferMeta(const MetaTensor& x,
                       paddle::optional<const MetaTensor&> y,
                       const std::vector<int>& target_shape,
                       MetaTensor* out) {
#define MAX_RANK_SUPPORTED 6
  auto x_dims = x.dims();
  PADDLE_ENFORCE_GE(
      target_shape.size(),
      static_cast<size_t>(x_dims.size()),
      phi::errors::InvalidArgument(
          "The rank of target_shape must be greater than or equal "
          "to the rank of Input(X). But received Input(X): input "
          "rank %u; received target_shape: rank %u.",
          x_dims.size(),
          target_shape.size()));
  PADDLE_ENFORCE_LE(target_shape.size(),
                    MAX_RANK_SUPPORTED,
                    phi::errors::InvalidArgument(
                        "The rank of target_shape must be less than or equal "
                        "to %d. But received: rank %u.",
                        MAX_RANK_SUPPORTED,
                        target_shape.size()));
  out->set_dims(phi::make_ddim(target_shape));
  out->set_dtype(x.dtype());
#undef MAX_RANK_SUPPORTED
}

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
void GatherInferMeta(const MetaTensor& x,
                     const MetaTensor& index,
                     const Scalar& axis,
                     MetaTensor* out) {
  auto index_dims = index.dims();

  if (index_dims.size() == 2) {
    PADDLE_ENFORCE_EQ(
        index_dims[1],
        1,
        phi::errors::InvalidArgument(
            "The last dim of index should be 1 when it is 2D, but we get %d",
            index_dims[1]));
  } else {
    PADDLE_ENFORCE_EQ(
        index_dims.size(),
        1,
        phi::errors::InvalidArgument(
            "The index should be 1D, when it is not 2D, but we get %d",
            index_dims.size()));
  }

  auto input_dim = x.dims();
  auto axis_v = axis.to<int>();
  if (axis.FromTensor() || axis_v == 0) {
    // if axis.FromTensor(), we can not obtain correct shape of output
    int batch_size = index_dims[0];
    phi::DDim output_dims(input_dim);
    output_dims[0] = batch_size;
    out->set_dims(output_dims);
    out->set_dtype(x.dtype());
    out->share_lod(x);
  } else {
    int index_size = index_dims[0];
    std::vector<int> out_dim_vec;
    for (int i = 0; i < axis_v; i++) {
      out_dim_vec.push_back(input_dim[i]);
    }
    out_dim_vec.push_back(index_size);
    for (int i = axis_v + 1; i < input_dim.size(); i++) {
      out_dim_vec.push_back(input_dim[i]);
    }
    auto output_dims = phi::make_ddim(out_dim_vec);
    out->set_dims(output_dims);
    out->set_dtype(x.dtype());
    out->share_lod(x);
  }
}

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
void GatherNdInferMeta(const MetaTensor& x,
                       const MetaTensor& index,
                       MetaTensor* out) {
  auto x_dims = x.dims();
  auto x_dims_size = x_dims.size();
  auto index_dims = index.dims();
  auto index_dims_size = index_dims.size();

  PADDLE_ENFORCE_LE(
      index_dims[index_dims_size - 1],
      x_dims_size,
      phi::errors::InvalidArgument(
          "Input(Index).shape[-1] should be no greater than Input(X).rank"));
  PADDLE_ENFORCE_GE(index_dims_size,
                    1UL,
                    phi::errors::InvalidArgument(
                        "The rank of Input(Index) should be greater than 1"));

  std::vector<int64_t> result_dims;
  // The result dims is
  //   Index.shape[:-1] + X.shape[Index.shape[-1]:]
  for (int i = 0; i < index_dims_size - 1; ++i) {
    result_dims.emplace_back(index_dims[i]);
  }
  for (int i = index_dims[index_dims_size - 1]; i < x_dims_size; ++i) {
    result_dims.emplace_back(x_dims[i]);
  }

  out->set_dims(phi::make_ddim(result_dims));
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

937 938 939 940 941 942 943 944 945 946 947 948 949
void GatherTreeMeta(const MetaTensor& ids,
                    const MetaTensor& parents,
                    MetaTensor* out) {
  auto ids_dims = ids.dims();
  auto parents_dims = parents.dims();
  PADDLE_ENFORCE_EQ(ids_dims == parents_dims,
                    true,
                    phi::errors::InvalidArgument(
                        "The shape of Input(Parents) must be same with the "
                        "shape of Input(Ids)."));
  out->set_dims(ids_dims);
}

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
void GridSampleBaseInferMeta(const MetaTensor& x,
                             const MetaTensor& grid,
                             MetaTensor* out,
                             MetaConfig config) {
  auto x_dims = x.dims();
  auto grid_dims = grid.dims();
  PADDLE_ENFORCE_EQ(x_dims.size(),
                    4,
                    phi::errors::InvalidArgument(
                        "Input(X) of GridSampleOp should be 4-D Tensor, but "
                        "received X dimension size(%d)",
                        x_dims.size()));
  PADDLE_ENFORCE_EQ(grid_dims.size(),
                    4,
                    phi::errors::InvalidArgument(
                        "Input(Grid) of GridSampleOp should be 4-D Tensor, "
                        "but received X dimension size(%d)",
                        grid_dims.size()));
  if (config.is_runtime || grid_dims[3] > 0) {
    PADDLE_ENFORCE_EQ(
        grid_dims[3],
        2,
        phi::errors::InvalidArgument(
            "Input(Grid) dimension[3] should be 2, but received %d",
            grid_dims[3]));
  }
  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(
        grid_dims[0],
        x_dims[0],
        phi::errors::InvalidArgument(
            "Input(X) and Input(Grid) dimension[0] should be equal, but "
            "received X dimension[0](%d) != Grid dimension[0](%d)",
            x_dims[0],
            grid_dims[0]));
  }

  out->set_dims({x_dims[0], x_dims[1], grid_dims[1], grid_dims[2]});
  out->set_dtype(x.dtype());
  out->share_lod(x);
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
void HuberLossInferMeta(const MetaTensor& input,
                        const MetaTensor& label,
                        float delta,
                        MetaTensor* out,
                        MetaTensor* residual,
                        MetaConfig config) {
  auto input_dims = input.dims();
  auto label_dims = label.dims();

  PADDLE_ENFORCE_EQ(input_dims.size(),
                    label_dims.size(),
                    phi::errors::InvalidArgument(
                        "Input(input) rank and Input(label) rank should be "
                        "same, but received input rank(%d) != label rank(%d)",
                        input_dims.size(),
                        label_dims.size()));

  bool contain_unknown_dim = phi::contain_unknown_dim(input_dims) ||
                             phi::contain_unknown_dim(label_dims);
  if (config.is_runtime || !contain_unknown_dim) {
    PADDLE_ENFORCE_EQ(
        input_dims,
        label_dims,
        phi::errors::InvalidArgument(
            "The Input(input) and Input(label) should have the same "
            "shape, but received input shape [%s] != label shape [%s]",
            input_dims,
            label_dims));
  }

  auto out_dims = label_dims;
  residual->set_dims(out_dims);
  out->set_dims(out_dims);
  out->share_lod(input);
}

void IndexSampleInferMeta(const MetaTensor& x,
                          const MetaTensor& y,
                          MetaTensor* out,
                          MetaConfig config) {
  auto input_dims = x.dims();
  PADDLE_ENFORCE_EQ(input_dims.size(),
                    2,
                    errors::InvalidArgument(
                        "Inputs(X) shape of IndexSample op should be 2-D, but "
                        "got X's shape = [%s], please check X shape.",
                        input_dims));

  auto index_dims = y.dims();
  PADDLE_ENFORCE_EQ(
      index_dims.size(),
      2,
      errors::InvalidArgument(
          "Inputs(Index) shape of IndexSample op should be 2-D, but "
          "got Index's shape [%s] , please check index shape.",
          input_dims));
  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(input_dims[0],
                      index_dims[0],
                      errors::InvalidArgument(
                          "Inputs(X)'s value of dimension 0 must same with "
                          "Inputs(Index)'s value of dimension 0, but "
                          "got %d of Inputs(X), and got %d of Inputs(Index), "
                          "please check Inputs shape.",
                          input_dims[0],
                          index_dims[0]));
  }
  out->set_dtype(x.dtype());
  out->set_dims(index_dims);
  out->share_lod(y);
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
void IndexSelectInferMeta(const MetaTensor& x,
                          const MetaTensor& index,
                          int dim,
                          MetaTensor* output) {
  auto input_dim = x.dims();
  auto index_dim = index.dims();

  PADDLE_ENFORCE_EQ(
      dim < input_dim.size() && dim >= (0 - input_dim.size()),
      true,
      phi::errors::OutOfRange(
          "Attr(dim) is out of range, It's expected "
          "to be in range of [-%d, %d]. But received Attr(dim) = %d.",
          input_dim.size(),
          input_dim.size() - 1,
          dim));

  PADDLE_ENFORCE_EQ(
      index_dim.size() == 1 || (index_dim.size() == 2 && index_dim[1] == 1),
      true,
      phi::errors::InvalidArgument(
          "The 'shape' of Input(Index) must be 1-D tensor. "
          "But received: the 'shape' of Input(Index) is [%s], "
          "the dimension of Input(Index) is [%d].",
          index_dim,
          index_dim.size()));

  PADDLE_ENFORCE_EQ(
      index_dim[0] != 0,
      true,
      phi::errors::InvalidArgument("The length of Input(Index) can't be 0."));

  auto output_dim = phi::vectorize(input_dim);
  if (dim < 0) {
    dim += input_dim.size();
  }
  output_dim[dim] = index_dim[0];
  output->set_dims(phi::make_ddim(output_dim));
  output->set_dtype(x.dtype());
  output->set_layout(x.layout());
  output->share_lod(x);
}

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
void KronInferMeta(const MetaTensor& x, const MetaTensor& y, MetaTensor* out) {
  auto dim_x = x.dims();
  auto dim_y = y.dims();
  auto rank_x = dim_x.size();
  auto rank_y = dim_y.size();
  auto rank = (rank_x > rank_y) ? rank_x : rank_y;

  std::vector<int64_t> dim_out;
  dim_out.reserve(rank);
  for (int i = 0; i < rank; i++) {
    int64_t dim_xi = (i < rank - rank_x) ? 1 : dim_x.at(i - (rank - rank_x));
    int64_t dim_yi = (i < rank - rank_y) ? 1 : dim_y.at(i - (rank - rank_y));
    dim_out.push_back(dim_xi == -1 || dim_yi == -1 ? -1 : dim_xi * dim_yi);
  }
  out->set_dims(phi::make_ddim(dim_out));
  out->set_dtype(x.dtype());
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
void LogLossInferMeta(const MetaTensor& input,
                      const MetaTensor& label,
                      float epsilon,
                      MetaTensor* out,
                      MetaConfig config) {
  auto pred_dims = input.dims();
  auto label_dims = label.dims();

  if (config.is_runtime ||
      (phi::product(pred_dims) > 0 && phi::product(label_dims) > 0)) {
    PADDLE_ENFORCE_EQ(
        pred_dims,
        label_dims,
        phi::errors::InvalidArgument(
            "The dimensions of Input(Predicted) must be equal to the"
            "dimensions of Input(Labels), but received dimensions of "
            "Input(Predicted)"
            "is [%s], received dimensions of Input(Labels) is [%s].",
            pred_dims,
            label_dims));
  }
  PADDLE_ENFORCE_EQ(pred_dims.size(),
                    2,
                    phi::errors::InvalidArgument(
                        "The dimensions of Input(Predicted) must be 2,"
                        "But received dimensions of Input(Predicted)"
                        "is [%d]",
                        pred_dims.size()));
  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(pred_dims[1],
                      1,
                      phi::errors::InvalidArgument(
                          "Each row of Input(Predicted) contains a real value, "
                          "so the 2nd dimension of Input(X) must be 1,"
                          "But got [%d]",
                          pred_dims[1]));
  }
  out->set_dims({pred_dims[0], 1});
  out->set_dtype(input.dtype());
  out->share_lod(input);
}

H
hong 已提交
1167 1168 1169 1170 1171 1172 1173
void MaskedSelectInferMeta(const MetaTensor& x,
                           const MetaTensor& mask,
                           MetaTensor* out) {
  out->set_dims({-1});  // can not infer
  out->set_dtype(x.dtype());
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
void MatmulInferMeta(const MetaTensor& x,
                     const MetaTensor& y,
                     bool trans_x,
                     bool trans_y,
                     MetaTensor* out) {
  std::vector<int64_t> dims_x = phi::vectorize(x.dims());
  std::vector<int64_t> dims_y = phi::vectorize(y.dims());
  auto ndims_x = dims_x.size();
  auto ndims_y = dims_y.size();
  PADDLE_ENFORCE_GT(ndims_x,
                    0UL,
                    phi::errors::InvalidArgument(
                        "The Input(x) dims size must be greater than 0,"
                        " but reviced dims size is 0. "));
  PADDLE_ENFORCE_GT(ndims_y,
                    0UL,
                    phi::errors::InvalidArgument(
                        "The Input(y) dims size must be greater than 0,"
                        " but reviced dims size is 0. "));

  bool x_broadcasted = false, y_broadcasted = false;
  if (ndims_x == 1) {
    dims_x.insert(dims_x.begin(), 1);
    ndims_x = 2;
    x_broadcasted = true;
  }

  if (ndims_y == 1) {
    dims_y.push_back(1);
    ndims_y = 2;
    y_broadcasted = true;
  }

  size_t M, N;
  if (trans_x) {
    M = dims_x[ndims_x - 1];
  } else {
    M = dims_x[ndims_x - 2];
  }
  if (trans_y) {
    N = dims_y[ndims_y - 2];
  } else {
    N = dims_y[ndims_y - 1];
  }

  std::vector<int64_t> new_dims;
  if (ndims_x > ndims_y) {
    new_dims.assign(dims_x.begin(), dims_x.end() - 2);
  } else if (ndims_x < ndims_y) {
    new_dims.assign(dims_y.begin(), dims_y.end() - 2);
  } else {
    new_dims.reserve(ndims_x);
    for (size_t i = 0; i < ndims_x - 2; ++i) {
      new_dims.push_back(std::max(dims_x[i], dims_y[i]));
    }
  }
  if (!x_broadcasted) {
    new_dims.push_back(M);
  }
  if (!y_broadcasted) {
    new_dims.push_back(N);
  }
  if (x_broadcasted && y_broadcasted) {
    new_dims.push_back(1);
  }

  auto ddim_out = phi::make_ddim(new_dims);

  out->set_dims(ddim_out);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
void MvInferMeta(const MetaTensor& x, const MetaTensor& vec, MetaTensor* out) {
  auto dim_x = x.dims();
  auto dim_vec = vec.dims();
  PADDLE_ENFORCE_EQ(
      dim_x.size(),
      2,
      phi::errors::InvalidArgument("The rank of input X should be 2, but is %d",
                                   dim_x.size()));
  PADDLE_ENFORCE_EQ(
      dim_vec.size(),
      1,
      phi::errors::InvalidArgument(
          "The rank of input Vec should be 1, but is %d", dim_vec.size()));
  PADDLE_ENFORCE_EQ(dim_x[1],
                    dim_vec[0],
                    phi::errors::InvalidArgument(
                        "X's second dimension is expected to be equal to "
                        "Vec's first dimension"
                        "but recieved X'shape = [%s], Vec's shape = [%s]",
                        dim_x,
                        dim_vec));

  auto dim_out = phi::make_ddim({dim_x[0]});

  out->set_dims(dim_out);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
void PReluInferMeta(const MetaTensor& x,
                    const MetaTensor& alpha,
                    const std::string& mode,
                    const std::string& data_format,
                    MetaTensor* out,
                    MetaConfig config) {
  auto x_dim = x.dims();
  if (mode == "all") {
    PADDLE_ENFORCE_EQ(phi::product(alpha.dims()),
                      1,
                      phi::errors::InvalidArgument(
                          "For mode 'all', size of weight Alpha must be one. "
                          "But recevied alpha's size: %d.",
                          product(alpha.dims())));
  } else if (mode == "channel") {
    auto x_rank = x_dim.size();
    PADDLE_ENFORCE_GE(x_rank,
                      2,
                      phi::errors::InvalidArgument(
                          "For mode 'channel', rank of input X must be "
                          "equal or larger than 2. But recevied X's "
                          "rank: %d",
                          x_rank));
    PADDLE_ENFORCE_EQ(data_format == "NCHW" || data_format == "NHWC",
                      true,
                      phi::errors::InvalidArgument(
                          "For mode 'channel', data_format must be one of "
                          "NCHW and NHWC. But recevied data_format: %s",
                          data_format));
    if (data_format == "NCHW" || config.is_run_mkldnn_kernel) {
      PADDLE_ENFORCE_EQ(product(alpha.dims()) == x_dim[1],
                        true,
                        phi::errors::InvalidArgument(
                            "For mode 'channel', size of weight Alpha must be "
                            "equal to the number of channels of input(x). But "
                            "recevied alpha's size: %d, x_dim[1]: %d",
                            product(alpha.dims()),
                            x_dim[1]));
    } else {
      PADDLE_ENFORCE_EQ(product(alpha.dims()) == x_dim[x_rank - 1],
                        true,
                        phi::errors::InvalidArgument(
                            "For mode 'channel', size of weight Alpha must be "
                            "equal to the number of channels of input(x). But "
                            "recevied alpha's size: %d, x_dim[%d]: %d",
                            product(alpha.dims()),
                            x_rank - 1,
                            x_dim[x_rank - 1]));
    }
  } else if (mode == "element") {
    auto alpha_dim = alpha.dims();
    auto alpha_rank = alpha_dim.size();
    auto x_rank = x_dim.size();
    PADDLE_ENFORCE_GE(x_rank,
                      1,
                      phi::errors::InvalidArgument(
                          "For mode 'element', rank of input X must be "
                          "equal or larger than 2. But recevied X's "
                          "rank: %d",
                          x_rank));
    PADDLE_ENFORCE_EQ(
        alpha_rank,
        x_rank,
        phi::errors::InvalidArgument(
            "For mode 'element', rank of weight Alpha must be ",
            "equal to the rank of input(x). But recevied alpha's rank: %d, "
            "x's rank: %d.",
            alpha_rank,
            x_rank));
    size_t x_product = 1;
    size_t alpha_product = 1;
    for (int64_t i = x_rank - 1; i > 0; i--) {
      x_product *= x_dim[i];
      alpha_product *= alpha_dim[i];
    }
    PADDLE_ENFORCE_EQ(
        alpha_product,
        x_product,
        phi::errors::InvalidArgument(
            "For mode 'element', the size of weight Alpha must be "
            "equal to the size of input(x). But recevied alpha's size: %d, "
            "x's size: %d.",
            alpha_product,
            x_product));
  } else {
    PADDLE_THROW(phi::errors::InvalidArgument(
        "Attr(mode) of prelu must be one of 'all', 'channel', or 'element'. "
        "But recevied "
        "mode: '%s'.",
        mode));
  }
  out->set_dims(x_dim);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);
}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
void SearchsortedInferMeta(const MetaTensor& sorted_sequence,
                           const MetaTensor& value,
                           bool out_int32,
                           bool right,
                           MetaTensor* out) {
  auto sequences_dims = sorted_sequence.dims();
  auto values_dims = value.dims();

  bool flag = true;
  if (sequences_dims.size() != values_dims.size()) {
    flag = false;
  }
  const auto& sequences_dims_size = sequences_dims.size();
  for (int64_t dim = 0; dim < sequences_dims_size - 1; ++dim) {
    if (sequences_dims[dim] != values_dims[dim]) {
      flag = false;
      break;
    }
  }
  if (sequences_dims.size() != 1) {
    PADDLE_ENFORCE_EQ(
        flag,
        true,
        phi::errors::Unavailable(
            "The dimensions of sorted_sequence tensor ( %s ) and values "
            "tensor ( %s ) can not match. Because the input sorted_sequence "
            "tensor must be 1 dimension or the first N-1 dimensions of "
            "sorted_sequence tensor and input values tensor must match. "
            "Please input appropriate sorted_sequence and values again! ",
            sequences_dims,
            values_dims));
  }

  if (out_int32) {
    PADDLE_ENFORCE_LT(
        sequences_dims[sequences_dims.size() - 1],
        std::numeric_limits<int>::max(),
        phi::errors::Unavailable(
            "The size of sorted_sequence %d exceed the maximum limit d%. "
            "Because the size of sorted_sequence should be less than the "
            "output maximum value for int32 bit. Please set appropriate "
            "sorted_sequence to meet this requirement! ",
            sequences_dims[sequences_dims.size() - 1],
            std::numeric_limits<int>::max()));
  }

  out->set_dims(values_dims);
  if (out_int32) {
    out->set_dtype(DataType::INT32);
  } else {
    out->set_dtype(DataType::INT64);
  }
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
void SegmentPoolInferMeta(const MetaTensor& x,
                          const MetaTensor& segment_ids,
                          const std::string& pooltype,
                          MetaTensor* out,
                          MetaTensor* summed_ids,
                          MetaConfig config) {
  auto dims = x.dims();
  dims[0] = -1;
  out->set_dims(dims);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());

  if (pooltype == "MEAN") {
    summed_ids->set_dims({-1, 1});
    summed_ids->set_dtype(x.dtype());
    summed_ids->set_layout(x.layout());
  }
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
void SigmoidCrossEntropyWithLogitsInferMeta(const MetaTensor& x,
                                            const MetaTensor& label,
                                            bool normalize,
                                            int ignore_index,
                                            MetaTensor* out,
                                            MetaConfig config) {
  auto x_dims = x.dims();
  auto labels_dims = label.dims();
  int rank = x_dims.size();
  PADDLE_ENFORCE_EQ(rank,
                    labels_dims.size(),
                    phi::errors::InvalidArgument(
                        "Input(X) and Input(Label) shall have the same rank."
                        "But received: the rank of Input(X) is [%d], "
                        "the rank of Input(Label) is [%d].",
                        rank,
                        labels_dims.size()));

  bool check = true;
  if ((!config.is_runtime) &&
      (phi::product(x_dims) <= 0 || phi::product(labels_dims) <= 0)) {
    check = false;
  }

  if (check) {
    PADDLE_ENFORCE_EQ(
        phi::slice_ddim(x_dims, 0, rank),
        phi::slice_ddim(labels_dims, 0, rank),
        phi::errors::InvalidArgument(
            "Input(X) and Input(Label) shall have the same shape "
            "except the last dimension. But received: the shape of "
            "Input(X) is [%s], the shape of Input(Label) is [%s].",
            x_dims,
            labels_dims));
  }

  out->set_dims(x_dims);
  out->set_dtype(x.dtype());
  out->share_lod(x);
}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
void TriangularSolveInferMeta(const MetaTensor& x,
                              const MetaTensor& y,
                              bool upper,
                              bool transpose,
                              bool unitriangular,
                              MetaTensor* out) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  auto x_dims_n = x_dims.size();
  auto y_dims_n = y_dims.size();

  PADDLE_ENFORCE_GE(x_dims_n,
                    2,
                    phi::errors::InvalidArgument(
                        "The input tensor X's dimensions of TriangularSolveOp "
                        "should be >= 2. But received X's "
                        "dimensions = %d, X's shape = [%s]",
                        x_dims.size(),
                        x_dims));

  PADDLE_ENFORCE_GE(y_dims_n,
                    2,
                    phi::errors::InvalidArgument(
                        "The input tensor Y's dimensions of TriangularSolveOp "
                        "should be >=2. But received Y's "
                        "dimensions = %d, Y's shape = [%s]",
                        y_dims.size(),
                        y_dims));

  PADDLE_ENFORCE_EQ(x_dims[x_dims_n - 2],
                    x_dims[x_dims_n - 1],
                    phi::errors::InvalidArgument(
                        "The inner-most 2 dimensions of Input(X) all should "
                        "be square matrices "
                        "But received X's shape[-2] = %d and shape[-1] = %d.",
                        x_dims[x_dims_n - 2],
                        x_dims[x_dims_n - 1]));

  std::vector<int64_t> x_dims_vec = phi::vectorize(x_dims);
  std::vector<int64_t> y_dims_vec = phi::vectorize(y_dims);

  std::vector<int64_t> x_dims_vec_cut(x_dims_vec.begin(), x_dims_vec.end() - 2);
  std::vector<int64_t> y_dims_vec_cut(y_dims_vec.begin(), y_dims_vec.end() - 2);

  std::vector<int64_t> expand_batch_portion =
      funcs::MatrixGetBroadcastBatchPortion(x_dims_vec_cut, y_dims_vec_cut);

  std::vector<int64_t> y_broadcast_dims({expand_batch_portion});
  y_broadcast_dims.insert(y_broadcast_dims.end(),
                          {y_dims_vec[y_dims_n - 2], y_dims_vec[y_dims_n - 1]});

  // dim of 'out' is the same with 'Y' after broadcast
  out->set_dims(phi::make_ddim(y_broadcast_dims));
  out->set_dtype(y.dtype());
  out->set_layout(y.layout());
  out->share_lod(y);
}

H
hong 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
void YoloBoxInferMeta(const MetaTensor& x,
                      const MetaTensor& img_size,
                      const std::vector<int>& anchors,
                      int class_num,
                      float conf_thresh,
                      int downsample_ratio,
                      bool clip_bbox,
                      float scale_x_y,
                      bool iou_aware,
                      float iou_aware_factor,
                      MetaTensor* boxes,
                      MetaTensor* scores,
                      MetaConfig config) {
  auto dim_x = x.dims();
  auto dim_imgsize = img_size.dims();
  int anchor_num = anchors.size() / 2;

  PADDLE_ENFORCE_EQ(
      dim_x.size(),
      4,
      phi::errors::InvalidArgument("Input(X) should be a 4-D tensor."
                                   "But received X dimension(%s)",
                                   dim_x.size()));
  if (iou_aware) {
    PADDLE_ENFORCE_EQ(
        dim_x[1],
        anchor_num * (6 + class_num),
        phi::errors::InvalidArgument(
            "Input(X) dim[1] should be equal to (anchor_mask_number * (6 "
            "+ class_num)) while iou_aware is true."
            "But received dim[1](%s) != (anchor_mask_number * "
            "(6+class_num)(%s).",
            dim_x[1],
            anchor_num * (6 + class_num)));
    PADDLE_ENFORCE_GE(
        iou_aware_factor,
        0,
        phi::errors::InvalidArgument(
            "Attr(iou_aware_factor) should greater than or equal to 0."
            "But received iou_aware_factor (%s)",
            iou_aware_factor));
    PADDLE_ENFORCE_LE(
        iou_aware_factor,
        1,
        phi::errors::InvalidArgument(
            "Attr(iou_aware_factor) should less than or equal to 1."
            "But received iou_aware_factor (%s)",
            iou_aware_factor));
  } else {
    PADDLE_ENFORCE_EQ(
        dim_x[1],
        anchor_num * (5 + class_num),
        phi::errors::InvalidArgument(
            "Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
            "+ class_num))."
            "But received dim[1](%s) != (anchor_mask_number * "
            "(5+class_num)(%s).",
            dim_x[1],
            anchor_num * (5 + class_num)));
  }
  PADDLE_ENFORCE_EQ(
      dim_imgsize.size(),
      2,
      phi::errors::InvalidArgument("Input(ImgSize) should be a 2-D tensor."
                                   "But received Imgsize size(%s)",
                                   dim_imgsize.size()));
  if ((dim_imgsize[0] > 0 && dim_x[0] > 0) || config.is_runtime) {
    PADDLE_ENFORCE_EQ(
        dim_imgsize[0],
        dim_x[0],
        phi::errors::InvalidArgument(
            "Input(ImgSize) dim[0] and Input(X) dim[0] should be same."));
  }
  PADDLE_ENFORCE_EQ(
      dim_imgsize[1],
      2,
      phi::errors::InvalidArgument("Input(ImgSize) dim[1] should be 2."
                                   "But received imgsize dim[1](%s).",
                                   dim_imgsize[1]));
  PADDLE_ENFORCE_GT(anchors.size(),
                    0,
                    phi::errors::InvalidArgument(
                        "Attr(anchors) length should be greater than 0."
                        "But received anchors length(%s).",
                        anchors.size()));
  PADDLE_ENFORCE_EQ(anchors.size() % 2,
                    0,
                    phi::errors::InvalidArgument(
                        "Attr(anchors) length should be even integer."
                        "But received anchors length (%s)",
                        anchors.size()));
  PADDLE_ENFORCE_GT(class_num,
                    0,
                    phi::errors::InvalidArgument(
                        "Attr(class_num) should be an integer greater than 0."
                        "But received class_num (%s)",
                        class_num));

  int box_num;
  if ((dim_x[2] > 0 && dim_x[3] > 0) || config.is_runtime) {
    box_num = dim_x[2] * dim_x[3] * anchor_num;
  } else {
    box_num = -1;
  }
  std::vector<int64_t> dim_boxes({dim_x[0], box_num, 4});
  boxes->set_dims(phi::make_ddim(dim_boxes));
  boxes->set_dtype(x.dtype());

  std::vector<int64_t> dim_scores({dim_x[0], box_num, class_num});
  scores->set_dims(phi::make_ddim(dim_scores));
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
void ValueCompareInferMeta(const MetaTensor& x,
                           const MetaTensor& y,
                           MetaTensor* out,
                           MetaConfig config) {
  detail::BinarySameInputDimsCheck(x, y, config);

  out->set_dims(x.dims());
  out->set_dtype(DataType::BOOL);
}

1669
}  // namespace phi
1670 1671

PD_REGISTER_INFER_META_FN(add_raw, phi::ElementwiseRawInferMeta);
H
hong 已提交
1672
PD_REGISTER_INFER_META_FN(conv2d, phi::ConvInferMeta);