test_seq_conv.py 9.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

C
chengduoZH 已提交
17 18 19
import unittest
import numpy as np
import random
20
from op_test import OpTest
C
chengduoZH 已提交
21 22


23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
def seqconv(x,
            lod,
            filter,
            context_length,
            context_start,
            padding_trainable=False,
            padding_data=None):
    [T, M] = x.shape
    col = np.zeros((T, context_length * M)).astype('float32')
    offset = [0]
    for seq_len in lod[0]:
        offset.append(offset[-1] + seq_len)
    begin_pad = np.max([0, -context_start])
    for i in range(len(offset) - 1):
        for j in range(context_length):
            in_begin = offset[i] + context_start + j
            in_end = offset[i + 1] + context_start + j
            out_begin = offset[i]
            out_end = offset[i + 1]
            if in_begin < offset[i]:
                pad_size = np.min(
                    [offset[i] - in_begin, offset[i + 1] - offset[i]])
                if padding_trainable:
                    sub_w = padding_data[j:j + pad_size, :]
                    col[offset[i]:offset[i] + pad_size, j * M:(j + 1) *
                        M] = sub_w
                out_begin = offset[i] + pad_size
                in_begin = offset[i]

            if in_end > offset[i + 1]:
                pad_size = np.min(
                    [in_end - offset[i + 1], offset[i + 1] - offset[i]])
                if padding_trainable:
                    sub_w = padding_data[begin_pad + context_start + j -
                                         pad_size:begin_pad + context_start +
                                         j, :]
                    col[offset[i + 1] - pad_size:offset[i + 1], j * M:(j + 1) *
                        M] = sub_w
                in_end = offset[i + 1]
                out_end = offset[i + 1] - pad_size
            if in_end <= in_begin:
                continue
            in_sub = x[in_begin:in_end, :]
            col[out_begin:out_end, j * M:(j + 1) * M] += in_sub
    return np.dot(col, filter)


C
chengduoZH 已提交
70 71 72 73 74 75 76 77
class TestSeqProject(OpTest):
    def setUp(self):
        self.init_test_case()
        self.op_type = 'sequence_conv'

        if self.context_length == 1 \
                and self.context_start == 0 \
                and self.padding_trainable:
78
            print("If context_start is 0 " \
C
chengduoZH 已提交
79
                  "and context_length is 1," \
80
                  " padding_trainable should be false.")
C
chengduoZH 已提交
81 82 83 84 85
            return

        # one level, batch size
        x = np.random.uniform(0.1, 1, [self.input_size[0],
                                       self.input_size[1]]).astype('float32')
C
chengduoZH 已提交
86 87 88
        w = np.random.uniform(0.1, 1, [
            self.context_length * self.input_size[1], self.output_represention
        ]).astype('float32')
C
chengduoZH 已提交
89 90 91 92 93 94 95

        begin_pad = np.max([0, -self.context_start])
        end_pad = np.max([0, self.context_start + self.context_length - 1])
        total_pad = begin_pad + end_pad
        padding_data = np.random.uniform(
            0.1, 1, [total_pad, self.input_size[1]]).astype('float32')
        self.pad_data = padding_data
C
chengduoZH 已提交
96 97
        self.inputs = {
            'X': (x, self.lod),
C
chengduoZH 已提交
98
            'Filter': w,
C
chengduoZH 已提交
99
        }
C
chengduoZH 已提交
100 101 102 103 104 105 106 107 108 109
        self.inputs_val = ['X', 'Filter']
        self.inputs_val_no_x = ['Filter']
        self.inputs_val_no_f = ['X']

        if total_pad != 0:
            self.inputs['PaddingData'] = padding_data
            self.inputs_val = ['X', 'PaddingData', 'Filter']
            self.inputs_val_no_x = ['PaddingData', 'Filter']
            self.inputs_val_no_f = ['PaddingData', 'X']

C
chengduoZH 已提交
110
        self.attrs = {
C
chengduoZH 已提交
111 112 113 114
            'contextStart': self.context_start,
            'contextLength': self.context_length,
            'paddingTrainable': self.padding_trainable,
            'contextStride': self.context_stride
C
chengduoZH 已提交
115
        }
116 117
        out = seqconv(x, self.lod, w, self.context_length, self.context_start,
                      self.padding_trainable, self.pad_data)
C
chengduoZH 已提交
118 119 120 121 122 123 124 125
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.padding_trainable:
            self.check_grad(
C
chengduoZH 已提交
126
                set(self.inputs_val), 'Out', max_relative_error=0.05)
C
chengduoZH 已提交
127 128 129 130 131 132

    def test_check_grad_input(self):
        self.check_grad(
            ['X'],
            'Out',
            max_relative_error=0.05,
C
chengduoZH 已提交
133
            no_grad_set=set(self.inputs_val_no_x))
C
chengduoZH 已提交
134 135 136 137

    def test_check_grad_padding_data(self):
        if self.padding_trainable:
            self.check_grad(
138
                ['PaddingData'], 'Out', no_grad_set=set(['X', 'Filter']))
C
chengduoZH 已提交
139 140 141 142 143 144

    def test_check_grad_Filter(self):
        self.check_grad(
            ['Filter'],
            'Out',
            max_relative_error=0.05,
C
chengduoZH 已提交
145
            no_grad_set=set(self.inputs_val_no_f))
C
chengduoZH 已提交
146

C
chengduoZH 已提交
147
    def test_check_grad_input_filter(self):
C
chengduoZH 已提交
148 149 150 151 152 153
        if self.padding_trainable:
            self.check_grad(
                ['X', 'Filter'],
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['PaddingData']))
C
chengduoZH 已提交
154 155 156 157

    def test_check_grad_padding_input(self):
        if self.padding_trainable:
            self.check_grad(
C
chengduoZH 已提交
158
                self.inputs_val_no_f,
C
chengduoZH 已提交
159 160 161 162 163 164 165
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['Filter']))

    def test_check_grad_padding_filter(self):
        if self.padding_trainable:
            self.check_grad(
C
chengduoZH 已提交
166
                self.inputs_val_no_x,
C
chengduoZH 已提交
167 168 169 170
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['X']))

C
chengduoZH 已提交
171 172 173 174 175 176 177 178
    def init_test_case(self):
        self.input_row = 11
        self.context_start = 0
        self.context_length = 1
        self.padding_trainable = False
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
179 180 181 182 183
        offset_lod = [[0, 4, 5, 8, self.input_row]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
184
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
185 186 187 188 189 190 191 192 193 194 195


class TestSeqProjectCase1(TestSeqProject):
    def init_test_case(self):
        self.input_row = 11
        self.context_start = -1
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
196 197 198 199 200
        offset_lod = [[0, 4, 5, 8, self.input_row]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
201
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
202 203


204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
class TestSeqProjectCase2Len0(TestSeqProject):
    def init_test_case(self):
        self.input_row = 11
        self.context_start = -1
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
        offset_lod = [[0, 0, 4, 5, 5, 8, self.input_row, self.input_row]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
        self.output_represention = 8  # output feature size


class TestSeqProjectCase3(TestSeqProject):
C
chengduoZH 已提交
222 223 224 225 226 227 228 229
    def init_test_case(self):
        self.input_row = 25
        self.context_start = 2
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
230
        idx = list(range(self.input_size[0]))
C
chengduoZH 已提交
231
        del idx[0]
232 233 234 235 236 237
        offset_lod = [[0] + np.sort(random.sample(idx, 8)).tolist() +
                      [self.input_size[0]]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
238
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
239 240


241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
class TestSeqConvApi(unittest.TestCase):
    def test_api(self):
        import paddle.fluid as fluid

        x = fluid.layers.data('x', shape=[32], lod_level=1)
        y = fluid.layers.sequence_conv(
            input=x, num_filters=2, filter_size=3, padding_start=None)

        place = fluid.CPUPlace()
        x_tensor = fluid.create_lod_tensor(
            np.random.rand(10, 32).astype("float32"), [[2, 3, 1, 4]], place)
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        ret = exe.run(feed={'x': x_tensor}, fetch_list=[y], return_numpy=False)


C
chengduoZH 已提交
257 258
if __name__ == '__main__':
    unittest.main()