test_seq_conv.py 8.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chengduoZH 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
import unittest
import numpy as np
import random
from op_test import OpTest


class TestSeqProject(OpTest):
    def setUp(self):
        self.init_test_case()
        self.op_type = 'sequence_conv'

        if self.context_length == 1 \
                and self.context_start == 0 \
                and self.padding_trainable:
            print "If context_start is 0 " \
                  "and context_length is 1," \
                  " padding_trainable should be false."
            return

        # one level, batch size
        x = np.random.uniform(0.1, 1, [self.input_size[0],
                                       self.input_size[1]]).astype('float32')
C
chengduoZH 已提交
37 38 39
        w = np.random.uniform(0.1, 1, [
            self.context_length * self.input_size[1], self.output_represention
        ]).astype('float32')
C
chengduoZH 已提交
40 41 42 43 44 45 46

        begin_pad = np.max([0, -self.context_start])
        end_pad = np.max([0, self.context_start + self.context_length - 1])
        total_pad = begin_pad + end_pad
        padding_data = np.random.uniform(
            0.1, 1, [total_pad, self.input_size[1]]).astype('float32')
        self.pad_data = padding_data
C
chengduoZH 已提交
47 48
        self.inputs = {
            'X': (x, self.lod),
C
chengduoZH 已提交
49
            'Filter': w,
C
chengduoZH 已提交
50
        }
C
chengduoZH 已提交
51 52 53 54 55 56 57 58 59 60
        self.inputs_val = ['X', 'Filter']
        self.inputs_val_no_x = ['Filter']
        self.inputs_val_no_f = ['X']

        if total_pad != 0:
            self.inputs['PaddingData'] = padding_data
            self.inputs_val = ['X', 'PaddingData', 'Filter']
            self.inputs_val_no_x = ['PaddingData', 'Filter']
            self.inputs_val_no_f = ['PaddingData', 'X']

C
chengduoZH 已提交
61
        self.attrs = {
C
chengduoZH 已提交
62 63 64 65
            'contextStart': self.context_start,
            'contextLength': self.context_length,
            'paddingTrainable': self.padding_trainable,
            'contextStride': self.context_stride
C
chengduoZH 已提交
66
        }
C
chengduoZH 已提交
67 68
        out = np.zeros(
            (self.input_size[0], self.output_represention)).astype('float32')
C
chengduoZH 已提交
69 70 71 72 73 74
        self.outputs = {'Out': out}
        self.compute()

    def compute(self):
        x, lod = self.inputs['X']
        filter = self.inputs['Filter']
C
chengduoZH 已提交
75
        pading_data = self.pad_data
C
chengduoZH 已提交
76 77
        out = np.zeros((self.input_size[0], self.context_length *
                        self.input_size[1])).astype('float32')
78 79 80
        offset = [0]
        for seq_len in lod[0]:
            offset.append(offset[-1] + seq_len)
C
chengduoZH 已提交
81 82
        begin_pad = np.max([0, -self.context_start])

83
        for i in range(len(offset) - 1):
C
chengduoZH 已提交
84
            for j in range(self.context_length):
85 86 87 88 89 90 91
                in_begin = offset[i] + self.context_start + j
                in_end = offset[i + 1] + self.context_start + j
                out_begin = offset[i]
                out_end = offset[i + 1]
                if in_begin < offset[i]:
                    pad_size = np.min(
                        [offset[i] - in_begin, offset[i + 1] - offset[i]])
C
chengduoZH 已提交
92 93
                    if self.padding_trainable:
                        sub_w = pading_data[j:j + pad_size, :]
94 95 96 97
                        out[offset[i]:offset[i] + pad_size, j * self.input_size[
                            1]:(j + 1) * self.input_size[1]] = sub_w
                    out_begin = offset[i] + pad_size
                    in_begin = offset[i]
C
chengduoZH 已提交
98

99
                if in_end > offset[i + 1]:
C
chengduoZH 已提交
100
                    pad_size = np.min(
101
                        [in_end - offset[i + 1], offset[i + 1] - offset[i]])
C
chengduoZH 已提交
102 103 104 105
                    if self.padding_trainable:
                        sub_w = pading_data[begin_pad + self.context_start + j -
                                            pad_size:begin_pad +
                                            self.context_start + j, :]
106
                        out[offset[i + 1] - pad_size:offset[i + 1], j * self.
C
chengduoZH 已提交
107
                            input_size[1]:(j + 1) * self.input_size[1]] = sub_w
108 109
                    in_end = offset[i + 1]
                    out_end = offset[i + 1] - pad_size
C
chengduoZH 已提交
110 111 112 113 114 115 116
                if in_end <= in_begin:
                    continue

                in_sub = x[in_begin:in_end, :]
                out[out_begin:out_end, j * self.input_size[1]:(j + 1) *
                    self.input_size[1]] += in_sub

C
chengduoZH 已提交
117
        np.dot(out, filter, out=self.outputs['Out'])
C
chengduoZH 已提交
118 119 120 121 122 123 124

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.padding_trainable:
            self.check_grad(
C
chengduoZH 已提交
125
                set(self.inputs_val), 'Out', max_relative_error=0.05)
C
chengduoZH 已提交
126 127 128 129 130 131

    def test_check_grad_input(self):
        self.check_grad(
            ['X'],
            'Out',
            max_relative_error=0.05,
C
chengduoZH 已提交
132
            no_grad_set=set(self.inputs_val_no_x))
C
chengduoZH 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146

    def test_check_grad_padding_data(self):
        if self.padding_trainable:
            self.check_grad(
                ['PaddingData'],
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['X', 'Filter']))

    def test_check_grad_Filter(self):
        self.check_grad(
            ['Filter'],
            'Out',
            max_relative_error=0.05,
C
chengduoZH 已提交
147
            no_grad_set=set(self.inputs_val_no_f))
C
chengduoZH 已提交
148

C
chengduoZH 已提交
149
    def test_check_grad_input_filter(self):
C
chengduoZH 已提交
150 151 152 153 154 155
        if self.padding_trainable:
            self.check_grad(
                ['X', 'Filter'],
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['PaddingData']))
C
chengduoZH 已提交
156 157 158 159

    def test_check_grad_padding_input(self):
        if self.padding_trainable:
            self.check_grad(
C
chengduoZH 已提交
160
                self.inputs_val_no_f,
C
chengduoZH 已提交
161 162 163 164 165 166 167
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['Filter']))

    def test_check_grad_padding_filter(self):
        if self.padding_trainable:
            self.check_grad(
C
chengduoZH 已提交
168
                self.inputs_val_no_x,
C
chengduoZH 已提交
169 170 171 172
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['X']))

C
chengduoZH 已提交
173 174 175 176 177 178 179 180
    def init_test_case(self):
        self.input_row = 11
        self.context_start = 0
        self.context_length = 1
        self.padding_trainable = False
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
181 182 183 184 185
        offset_lod = [[0, 4, 5, 8, self.input_row]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
186
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
187 188 189 190 191 192 193 194 195 196 197


class TestSeqProjectCase1(TestSeqProject):
    def init_test_case(self):
        self.input_row = 11
        self.context_start = -1
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
198 199 200 201 202
        offset_lod = [[0, 4, 5, 8, self.input_row]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
203
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216


class TestSeqProjectCase2(TestSeqProject):
    def init_test_case(self):
        self.input_row = 25
        self.context_start = 2
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
        idx = range(self.input_size[0])
        del idx[0]
217 218 219 220 221 222
        offset_lod = [[0] + np.sort(random.sample(idx, 8)).tolist() +
                      [self.input_size[0]]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
223
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
224 225 226 227


if __name__ == '__main__':
    unittest.main()