dropout_op.cc 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14

S
sneaxiy 已提交
15
#include <memory>
P
phlrain 已提交
16
#include <string>
17

H
hong 已提交
18
#include "paddle/fluid/framework/infershape_utils.h"
H
hong 已提交
19
#include "paddle/fluid/framework/op_registry.h"
H
hong 已提交
20
#include "paddle/phi/infermeta/binary.h"
X
Xinghai Sun 已提交
21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using framework::Tensor;

class DropoutOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

M
mapingshuo 已提交
31 32 33 34 35 36
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
37 38 39 40 41 42 43 44 45 46 47 48 49

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "Seed") {
      VLOG(10) << "var_name:" << var_name
               << " does not need to transform in dropout op";
      return expected_kernel_type;
    }

    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
X
Xinghai Sun 已提交
50 51 52 53
};

class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
54
  void Make() override {
X
Xinghai Sun 已提交
55
    AddInput("X", "The input of dropout op.");
M
mapingshuo 已提交
56 57 58
    AddInput("Seed",
             "The seed of dropout op, it has higher priority than the attr "
             "fix_seed and seed")
59 60
        .AsDispensable()
        .AsExtra();
X
Xinghai Sun 已提交
61
    AddOutput("Out", "The output of dropout op.");
62 63 64
    AddOutput("Mask", "The random sampled dropout mask.")
        .AsIntermediate()
        .AsExtra();
X
Xinghai Sun 已提交
65

K
Kexin Zhao 已提交
66
    AddAttr<float>("dropout_prob", "Probability of setting units to zero.")
C
chengduoZH 已提交
67 68
        .SetDefault(.5f)
        .AddCustomChecker([](const float& drop_p) {
69 70 71
          PADDLE_ENFORCE_EQ(drop_p >= 0.0f && drop_p <= 1.0f, true,
                            platform::errors::InvalidArgument(
                                "'dropout_prob' must be between 0.0 and 1.0."));
C
chengduoZH 已提交
72
        });
73 74 75 76
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
77 78 79 80 81 82
    AddAttr<bool>("fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
83 84
        .SetDefault(false)
        .AsExtra();
85
    AddAttr<int>("seed", "Dropout random seed.").SetDefault(0).AsExtra();
P
phlrain 已提交
86 87 88 89 90 91 92 93 94
    AddAttr<std::string>(
        "dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "There are two kinds of ways to implement dropout"
        "(the mask below is a tensor have the same shape with input"
        "the value of mask is 0 or 1, the ratio of 0 is dropout_prob)"
        "1. downgrade_in_infer(default), downgrade the outcome at inference "
        "time"
        "   train: out = input * mask"
C
ceci3 已提交
95
        "   inference: out = input * (1.0 - dropout_prob)"
P
phlrain 已提交
96 97 98 99 100 101 102 103
        "2. upscale_in_train, upscale the outcome at training time, do nothing "
        "in inference"
        "   train: out = input * mask / ( 1.0 - dropout_prob )"
        "   inference: out = input"
        "   dropout op can be removed from the program. the program will be "
        "efficient")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string& type) {
104 105 106 107 108
          PADDLE_ENFORCE_EQ(
              type == "downgrade_in_infer" || type == "upscale_in_train", true,
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
P
phlrain 已提交
109
        });
K
Kexin Zhao 已提交
110

111 112 113
    AddComment(R"DOC(
Dropout Operator.

K
Kexin Zhao 已提交
114
Dropout refers to randomly dropping out units in a nerual network. It is a
115 116
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
117
the given dropout probability) the outputs of some units to zero, while others
K
Kexin Zhao 已提交
118 119
are set equal to their corresponding inputs.

120
)DOC");
X
Xinghai Sun 已提交
121 122 123 124 125 126 127
  }
};

class DropoutOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

128
  void InferShape(framework::InferShapeContext* ctx) const override {
129 130 131
    OP_INOUT_CHECK(ctx->HasInput("Mask"), "Input", "Mask", "DropoutGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "DropoutGrad");
Q
Qiao Longfei 已提交
132 133

    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
S
sneaxiy 已提交
134 135 136 137 138

    ctx->SetOutputDim(framework::GradVarName("X"), out_dims);
    ctx->ShareLoD(framework::GradVarName("Out"),
                  /*->*/ framework::GradVarName("X"));
  }
Z
Zeng Jinle 已提交
139 140 141 142

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
143 144 145
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
Z
Zeng Jinle 已提交
146
  }
S
sneaxiy 已提交
147 148
};

H
hong 已提交
149 150
template <typename T>
class DropoutGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
151
 public:
H
hong 已提交
152
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
153 154

 protected:
155
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
156
    op->SetType("dropout_grad");
H
hong 已提交
157 158 159 160
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Mask", this->Output("Mask"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
X
Xinghai Sun 已提交
161 162 163 164 165 166 167
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
168 169 170
DECLARE_INFER_SHAPE_FUNCTOR(dropout, DropoutInferShapeFunctor,
                            PD_INFER_META(phi::DropoutInferMeta));

Y
Yang Yang 已提交
171
REGISTER_OPERATOR(dropout, ops::DropoutOp, ops::DropoutOpMaker,
H
hong 已提交
172
                  ops::DropoutGradOpMaker<paddle::framework::OpDesc>,
H
hong 已提交
173 174
                  ops::DropoutGradOpMaker<paddle::imperative::OpBase>,
                  DropoutInferShapeFunctor);
175
REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad);