dropout_op.cc 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14

S
sneaxiy 已提交
15
#include <memory>
P
phlrain 已提交
16
#include <string>
H
hong 已提交
17
#include "paddle/fluid/framework/infershape_utils.h"
H
hong 已提交
18
#include "paddle/fluid/framework/op_registry.h"
H
hong 已提交
19
#include "paddle/phi/infermeta/unary.h"
X
Xinghai Sun 已提交
20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using framework::Tensor;

class DropoutOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

M
mapingshuo 已提交
30 31 32 33 34 35
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
36 37 38 39 40 41 42 43 44 45 46 47 48

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "Seed") {
      VLOG(10) << "var_name:" << var_name
               << " does not need to transform in dropout op";
      return expected_kernel_type;
    }

    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
X
Xinghai Sun 已提交
49 50 51 52
};

class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
53
  void Make() override {
X
Xinghai Sun 已提交
54
    AddInput("X", "The input of dropout op.");
M
mapingshuo 已提交
55 56 57
    AddInput("Seed",
             "The seed of dropout op, it has higher priority than the attr "
             "fix_seed and seed")
58 59
        .AsDispensable()
        .AsExtra();
X
Xinghai Sun 已提交
60
    AddOutput("Out", "The output of dropout op.");
61 62 63
    AddOutput("Mask", "The random sampled dropout mask.")
        .AsIntermediate()
        .AsExtra();
X
Xinghai Sun 已提交
64

K
Kexin Zhao 已提交
65
    AddAttr<float>("dropout_prob", "Probability of setting units to zero.")
C
chengduoZH 已提交
66 67
        .SetDefault(.5f)
        .AddCustomChecker([](const float& drop_p) {
68 69 70
          PADDLE_ENFORCE_EQ(drop_p >= 0.0f && drop_p <= 1.0f, true,
                            platform::errors::InvalidArgument(
                                "'dropout_prob' must be between 0.0 and 1.0."));
C
chengduoZH 已提交
71
        });
72 73 74 75
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
76 77 78 79 80 81
    AddAttr<bool>("fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
82 83
        .SetDefault(false)
        .AsExtra();
84
    AddAttr<int>("seed", "Dropout random seed.").SetDefault(0).AsExtra();
P
phlrain 已提交
85 86 87 88 89 90 91 92 93
    AddAttr<std::string>(
        "dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "There are two kinds of ways to implement dropout"
        "(the mask below is a tensor have the same shape with input"
        "the value of mask is 0 or 1, the ratio of 0 is dropout_prob)"
        "1. downgrade_in_infer(default), downgrade the outcome at inference "
        "time"
        "   train: out = input * mask"
C
ceci3 已提交
94
        "   inference: out = input * (1.0 - dropout_prob)"
P
phlrain 已提交
95 96 97 98 99 100 101 102
        "2. upscale_in_train, upscale the outcome at training time, do nothing "
        "in inference"
        "   train: out = input * mask / ( 1.0 - dropout_prob )"
        "   inference: out = input"
        "   dropout op can be removed from the program. the program will be "
        "efficient")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string& type) {
103 104 105 106 107
          PADDLE_ENFORCE_EQ(
              type == "downgrade_in_infer" || type == "upscale_in_train", true,
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
P
phlrain 已提交
108
        });
K
Kexin Zhao 已提交
109

110 111 112
    AddComment(R"DOC(
Dropout Operator.

K
Kexin Zhao 已提交
113
Dropout refers to randomly dropping out units in a nerual network. It is a
114 115
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
116
the given dropout probability) the outputs of some units to zero, while others
K
Kexin Zhao 已提交
117 118
are set equal to their corresponding inputs.

119
)DOC");
X
Xinghai Sun 已提交
120 121 122 123 124 125 126
  }
};

class DropoutOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

127
  void InferShape(framework::InferShapeContext* ctx) const override {
128 129 130
    OP_INOUT_CHECK(ctx->HasInput("Mask"), "Input", "Mask", "DropoutGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "DropoutGrad");
Q
Qiao Longfei 已提交
131 132

    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
S
sneaxiy 已提交
133 134 135 136 137

    ctx->SetOutputDim(framework::GradVarName("X"), out_dims);
    ctx->ShareLoD(framework::GradVarName("Out"),
                  /*->*/ framework::GradVarName("X"));
  }
Z
Zeng Jinle 已提交
138 139 140 141

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
142 143 144
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
Z
Zeng Jinle 已提交
145
  }
S
sneaxiy 已提交
146 147
};

H
hong 已提交
148 149
template <typename T>
class DropoutGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
150
 public:
H
hong 已提交
151
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
152 153

 protected:
154
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
155
    op->SetType("dropout_grad");
H
hong 已提交
156 157 158 159
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Mask", this->Output("Mask"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
X
Xinghai Sun 已提交
160 161 162 163 164 165 166
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
167 168 169
DECLARE_INFER_SHAPE_FUNCTOR(dropout, DropoutInferShapeFunctor,
                            PD_INFER_META(phi::DropoutInferMeta));

Y
Yang Yang 已提交
170
REGISTER_OPERATOR(dropout, ops::DropoutOp, ops::DropoutOpMaker,
H
hong 已提交
171
                  ops::DropoutGradOpMaker<paddle::framework::OpDesc>,
H
hong 已提交
172 173
                  ops::DropoutGradOpMaker<paddle::imperative::OpBase>,
                  DropoutInferShapeFunctor);
174
REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad);