determinant_op.cc 6.7 KB
Newer Older
H
huangxu96 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/determinant_op.h"
16

17 18 19 20
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"
H
huangxu96 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

namespace paddle {
namespace operators {

class DeterminantOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
};

class DeterminantOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input", "(Tensor) The input tensor of determinant.");
    AddOutput("Out",
              "(Tensor) The output Tensor containing the determinant"
              "value of a square matrix or batches of square matrices ");

    AddComment(R"DOC(
Determinant Operator.)DOC");
  }
};

class DeterminantGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
  }
};

template <typename T>
class DeterminantGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("determinant_grad");
    grad_op->SetInput("Input", this->Input("Input"));
    grad_op->SetInput("Out", this->Output("Out"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("Input"),
                       this->InputGrad("Input"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(DeterminantGradNoNeedBufferVarsInferer,
                                    "Input");

class SlogDeterminantOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "determinant");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "determinant");
  }
};

class SlogDeterminantOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input", "(Tensor) The input tensor of SlogDeterminant.");
    AddOutput("Out",
              "(Tensor) The output tensor containing the sign of the"
              "determinant and the natural logarithm"
              "of the absolute value of determinant,");

    AddComment(R"DOC(
SlogDeterminant Operator.)DOC");
  }
};

class SlogDeterminantGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input",
                   "SlogDeterminantGradOp");
    OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out",
                   "SlogDeterminantGradOp");
109 110
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "SlogDeterminantGradOp");
H
huangxu96 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Input")), "Output",
                   framework::GradVarName("Input"), "SlogDeterminantGradOp");

    ctx->SetOutputDim(framework::GradVarName("Input"),
                      ctx->GetInputDim("Input"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
  }
};

template <typename T>
class SlogDeterminantGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("slogdeterminant_grad");
    grad_op->SetInput("Input", this->Input("Input"));
    grad_op->SetInput("Out", this->Output("Out"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("Input"),
                       this->InputGrad("Input"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(SlogDeterminantGradNoNeedBufferVarsInferer,
                                    "Input");

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
152 153
DECLARE_INFER_SHAPE_FUNCTOR(determinant, DeterminantInferShapeFunctor,
                            PD_INFER_META(phi::UnchangedInferMeta));
H
huangxu96 已提交
154 155
REGISTER_OPERATOR(determinant, ops::DeterminantOp, ops::DeterminantOpMaker,
                  ops::DeterminantGradOpMaker<paddle::framework::OpDesc>,
156 157
                  ops::DeterminantGradOpMaker<paddle::imperative::OpBase>,
                  DeterminantInferShapeFunctor);
H
huangxu96 已提交
158

159 160 161 162
DECLARE_INFER_SHAPE_FUNCTOR(determinant_grad, DeterminantGradInferShapeFunctor,
                            PD_INFER_META(phi::GeneralUnaryGradInferMeta));
REGISTER_OPERATOR(determinant_grad, ops::DeterminantGradOp,
                  DeterminantGradInferShapeFunctor);
H
huangxu96 已提交
163 164 165 166 167 168 169

REGISTER_OPERATOR(slogdeterminant, ops::SlogDeterminantOp,
                  ops::SlogDeterminantOpMaker,
                  ops::SlogDeterminantGradOpMaker<paddle::framework::OpDesc>,
                  ops::SlogDeterminantGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(slogdeterminant_grad,
170
                  ops::SlogDeterminantGradOp)  // reuse det grad op
H
huangxu96 已提交
171 172 173 174 175 176 177

REGISTER_OP_CPU_KERNEL(
    slogdeterminant, ops::SlogDeterminantKernel<plat::CPUDeviceContext, float>,
    ops::SlogDeterminantKernel<plat::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
    slogdeterminant_grad,
178 179
    ops::SlogDeterminantGradKernel<plat::CPUDeviceContext, float>,
    ops::SlogDeterminantGradKernel<plat::CPUDeviceContext, double>);