determinant_op.cc 7.0 KB
Newer Older
H
huangxu96 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/determinant_op.h"

namespace paddle {
namespace operators {

class DeterminantOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "determinant");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "determinant");
  }
};

class DeterminantOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input", "(Tensor) The input tensor of determinant.");
    AddOutput("Out",
              "(Tensor) The output Tensor containing the determinant"
              "value of a square matrix or batches of square matrices ");

    AddComment(R"DOC(
Determinant Operator.)DOC");
  }
};

class DeterminantGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input",
                   "DeterminantGradOp");
    OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "DeterminantGradOp");
51 52
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "DeterminantGradOp");
H
huangxu96 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Input")), "Output",
                   framework::GradVarName("Input"), "DeterminantGradOp");

    ctx->SetOutputDim(framework::GradVarName("Input"),
                      ctx->GetInputDim("Input"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
  }
};

template <typename T>
class DeterminantGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("determinant_grad");
    grad_op->SetInput("Input", this->Input("Input"));
    grad_op->SetInput("Out", this->Output("Out"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("Input"),
                       this->InputGrad("Input"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(DeterminantGradNoNeedBufferVarsInferer,
                                    "Input");

class SlogDeterminantOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "determinant");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "determinant");
  }
};

class SlogDeterminantOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input", "(Tensor) The input tensor of SlogDeterminant.");
    AddOutput("Out",
              "(Tensor) The output tensor containing the sign of the"
              "determinant and the natural logarithm"
              "of the absolute value of determinant,");

    AddComment(R"DOC(
SlogDeterminant Operator.)DOC");
  }
};

class SlogDeterminantGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input",
                   "SlogDeterminantGradOp");
    OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out",
                   "SlogDeterminantGradOp");
122 123
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "SlogDeterminantGradOp");
H
huangxu96 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Input")), "Output",
                   framework::GradVarName("Input"), "SlogDeterminantGradOp");

    ctx->SetOutputDim(framework::GradVarName("Input"),
                      ctx->GetInputDim("Input"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
  }
};

template <typename T>
class SlogDeterminantGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("slogdeterminant_grad");
    grad_op->SetInput("Input", this->Input("Input"));
    grad_op->SetInput("Out", this->Output("Out"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("Input"),
                       this->InputGrad("Input"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(SlogDeterminantGradNoNeedBufferVarsInferer,
                                    "Input");

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OPERATOR(determinant, ops::DeterminantOp, ops::DeterminantOpMaker,
                  ops::DeterminantGradOpMaker<paddle::framework::OpDesc>,
                  ops::DeterminantGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(determinant_grad, ops::DeterminantGradOp)

REGISTER_OPERATOR(slogdeterminant, ops::SlogDeterminantOp,
                  ops::SlogDeterminantOpMaker,
                  ops::SlogDeterminantGradOpMaker<paddle::framework::OpDesc>,
                  ops::SlogDeterminantGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(slogdeterminant_grad,
177
                  ops::SlogDeterminantGradOp)  // reuse det grad op
H
huangxu96 已提交
178 179 180 181 182 183 184

REGISTER_OP_CPU_KERNEL(
    slogdeterminant, ops::SlogDeterminantKernel<plat::CPUDeviceContext, float>,
    ops::SlogDeterminantKernel<plat::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
    slogdeterminant_grad,
185 186
    ops::SlogDeterminantGradKernel<plat::CPUDeviceContext, float>,
    ops::SlogDeterminantGradKernel<plat::CPUDeviceContext, double>);