distribute_fpn_proposals_op.cu 8.6 KB
Newer Older
J
jerrywgz 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
J
jerrywgz 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef __NVCC__
J
jerrywgz 已提交
16
#include "cub/cub.cuh"
17 18 19
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
20
namespace cub = hipcub;
21 22 23
#endif

#include <paddle/fluid/memory/allocation/allocator.h>
24

J
jerrywgz 已提交
25
#include "paddle/fluid/memory/memcpy.h"
26
#include "paddle/fluid/operators/detection/bbox_util.h"
J
jerrywgz 已提交
27
#include "paddle/fluid/operators/detection/distribute_fpn_proposals_op.h"
28
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
J
jerrywgz 已提交
29
#include "paddle/fluid/platform/for_range.h"
30
#include "paddle/phi/kernels/funcs/gather.cu.h"
31
#include "paddle/phi/kernels/funcs/math_function.h"
J
jerrywgz 已提交
32 33 34 35 36 37 38

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

39
static constexpr int kNumCUDAThreads = 64;
J
jerrywgz 已提交
40 41 42 43 44 45 46 47 48 49
static constexpr int kNumMaxinumNumBlocks = 4096;

int const BBoxSize = 4;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <class T>
50
__global__ void GPUDistFpnProposalsHelper(
J
jerrywgz 已提交
51 52 53
    const int nthreads, const T* rois, const int lod_size,
    const int refer_level, const int refer_scale, const int max_level,
    const int min_level, int* roi_batch_id_data, int* sub_lod_list,
54
    int* target_lvls, bool pixel_offset = true) {
55
  CUDA_KERNEL_LOOP(i, nthreads) {
J
jerrywgz 已提交
56 57
    const T* offset_roi = rois + i * BBoxSize;
    int roi_batch_ind = roi_batch_id_data[i];
J
jerrywgz 已提交
58
    // get the target level of current rois
59
    T roi_area = RoIArea(offset_roi, pixel_offset);
J
jerrywgz 已提交
60
    T roi_scale = sqrt(roi_area);
61
    int tgt_lvl = floor(
62
        log2(roi_scale / static_cast<T>(refer_scale) + (T)1e-8) + refer_level);
J
jerrywgz 已提交
63 64
    tgt_lvl = min(max_level, max(tgt_lvl, min_level));
    target_lvls[i] = tgt_lvl;
J
jerrywgz 已提交
65
    // compute number of rois in the same batch and same target level
66 67
    platform::CudaAtomicAdd(
        sub_lod_list + (tgt_lvl - min_level) * lod_size + roi_batch_ind, 1);
J
jerrywgz 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
  }
}

template <typename DeviceContext, typename T>
class GPUDistributeFpnProposalsOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* fpn_rois = ctx.Input<paddle::framework::LoDTensor>("FpnRois");

    auto multi_fpn_rois = ctx.MultiOutput<LoDTensor>("MultiFpnRois");
    auto* restore_index = ctx.Output<Tensor>("RestoreIndex");

    const int min_level = ctx.Attr<int>("min_level");
    const int max_level = ctx.Attr<int>("max_level");
    const int refer_level = ctx.Attr<int>("refer_level");
    const int refer_scale = ctx.Attr<int>("refer_scale");
84
    const bool pixel_offset = ctx.Attr<bool>("pixel_offset");
J
jerrywgz 已提交
85 86 87
    int num_level = max_level - min_level + 1;

    // check that the fpn_rois is not empty
88 89 90 91 92 93
    if (!ctx.HasInput("RoisNum")) {
      PADDLE_ENFORCE_EQ(
          fpn_rois->lod().size(), 1UL,
          platform::errors::InvalidArgument("DistributeFpnProposalsOp needs LoD"
                                            "with one level"));
    }
J
jerrywgz 已提交
94

95 96 97 98 99 100 101
    std::vector<size_t> fpn_rois_lod;
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num = ctx.Input<Tensor>("RoisNum");
      fpn_rois_lod = GetLodFromRoisNum(rois_num);
    } else {
      fpn_rois_lod = fpn_rois->lod().back();
    }
J
jerrywgz 已提交
102 103 104 105 106
    int lod_size = fpn_rois_lod.size() - 1;
    int roi_num = fpn_rois_lod[lod_size];

    auto& dev_ctx = ctx.template device_context<DeviceContext>();

J
jerrywgz 已提交
107
    // get batch id by lod in CPU
J
jerrywgz 已提交
108 109 110 111 112 113 114 115 116
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({roi_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(platform::CPUPlace());
    for (int n = 0; n < lod_size; ++n) {
      for (size_t i = fpn_rois_lod[n]; i < fpn_rois_lod[n + 1]; ++i) {
        roi_batch_id_data[i] = n;
      }
    }
J
jerrywgz 已提交
117
    // copy batch id list to GPU
J
jerrywgz 已提交
118 119 120 121 122 123 124
    Tensor roi_batch_id_list_gpu;
    framework::TensorCopySync(roi_batch_id_list, dev_ctx.GetPlace(),
                              &roi_batch_id_list_gpu);

    Tensor sub_lod_list;
    sub_lod_list.Resize({num_level, lod_size});
    int* sub_lod_list_data = sub_lod_list.mutable_data<int>(dev_ctx.GetPlace());
125
    phi::funcs::SetConstant<platform::CUDADeviceContext, int> set_zero;
126 127
    set_zero(dev_ctx, &sub_lod_list, static_cast<int>(0));

J
jerrywgz 已提交
128 129 130 131
    Tensor target_lvls;
    target_lvls.Resize({roi_num});
    int* target_lvls_data = target_lvls.mutable_data<int>(dev_ctx.GetPlace());

132
    int dist_blocks = NumBlocks(roi_num);
J
jerrywgz 已提交
133
    int threads = kNumCUDAThreads;
J
jerrywgz 已提交
134
    // get target levels and sub_lod list
135
    GPUDistFpnProposalsHelper<T><<<dist_blocks, threads, 0, dev_ctx.stream()>>>(
J
jerrywgz 已提交
136 137
        roi_num, fpn_rois->data<T>(), lod_size, refer_level, refer_scale,
        max_level, min_level, roi_batch_id_list_gpu.data<int>(),
138
        sub_lod_list_data, target_lvls_data, pixel_offset);
139
    auto place = dev_ctx.GetPlace();
J
jerrywgz 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152

    Tensor index_in_t;
    int* idx_in = index_in_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());
    platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx, roi_num);
    for_range(RangeInitFunctor{0, 1, idx_in});

    Tensor keys_out_t;
    int* keys_out = keys_out_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());
    Tensor index_out_t;
    int* idx_out = index_out_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());

    // Determine temporary device storage requirements
    size_t temp_storage_bytes = 0;
153 154 155
    cub::DeviceRadixSort::SortPairs<int, int>(
        nullptr, temp_storage_bytes, target_lvls_data, keys_out, idx_in,
        idx_out, roi_num, 0, sizeof(int) * 8, dev_ctx.stream());
J
jerrywgz 已提交
156
    // Allocate temporary storage
157
    auto d_temp_storage = memory::Alloc(place, temp_storage_bytes);
J
jerrywgz 已提交
158

159 160
    // Run sorting operation
    // sort target level to get corresponding index
161
    cub::DeviceRadixSort::SortPairs<int, int>(
J
jerrywgz 已提交
162
        d_temp_storage->ptr(), temp_storage_bytes, target_lvls_data, keys_out,
163
        idx_in, idx_out, roi_num, 0, sizeof(int) * 8, dev_ctx.stream());
J
jerrywgz 已提交
164 165 166

    int* restore_idx_data =
        restore_index->mutable_data<int>({roi_num, 1}, dev_ctx.GetPlace());
167
    // sort current index to get restore index
168
    cub::DeviceRadixSort::SortPairs<int, int>(
J
jerrywgz 已提交
169
        d_temp_storage->ptr(), temp_storage_bytes, idx_out, keys_out, idx_in,
170
        restore_idx_data, roi_num, 0, sizeof(int) * 8, dev_ctx.stream());
J
jerrywgz 已提交
171

172
    int start = 0;
173 174
    auto multi_rois_num = ctx.MultiOutput<Tensor>("MultiLevelRoIsNum");

175 176 177 178 179 180
    std::vector<int> sub_lod_list_cpu(lod_size * num_level);
    memory::Copy(platform::CPUPlace(), sub_lod_list_cpu.data(), place,
                 sub_lod_list_data, sizeof(int) * lod_size * num_level,
                 dev_ctx.stream());
    dev_ctx.Wait();

J
jerrywgz 已提交
181 182
    for (int i = 0; i < num_level; ++i) {
      Tensor sub_lod = sub_lod_list.Slice(i, i + 1);
J
jerrywgz 已提交
183
      // transfer length-based lod to offset-based lod
184 185
      std::vector<size_t> offset(1, 0);
      for (int j = 0; j < lod_size; ++j) {
186
        offset.emplace_back(offset.back() + sub_lod_list_cpu[i * lod_size + j]);
187
      }
J
jerrywgz 已提交
188

189 190 191 192 193 194 195 196
      int sub_rois_num = offset.back();

      int end = start + sub_rois_num;
      if (end > start) {
        Tensor sub_idx = index_out_t.Slice(start, end);
        start = end;
        multi_fpn_rois[i]->mutable_data<T>({sub_rois_num, kBoxDim},
                                           dev_ctx.GetPlace());
197 198
        phi::funcs::GPUGather<T>(dev_ctx, *fpn_rois, sub_idx,
                                 multi_fpn_rois[i]);
199 200 201 202
      } else {
        multi_fpn_rois[i]->mutable_data<T>({sub_rois_num, kBoxDim},
                                           dev_ctx.GetPlace());
      }
203 204
      if (multi_rois_num.size() > 0) {
        Tensor* rois_num_t = multi_rois_num[i];
205 206
        paddle::framework::TensorCopySync(sub_lod, dev_ctx.GetPlace(),
                                          rois_num_t);
207 208
        rois_num_t->Resize({lod_size});
      }
J
jerrywgz 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
      framework::LoD lod;
      lod.emplace_back(offset);
      multi_fpn_rois[i]->set_lod(lod);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    distribute_fpn_proposals,
    ops::GPUDistributeFpnProposalsOpKernel<paddle::platform::CUDADeviceContext,
                                           float>,
    ops::GPUDistributeFpnProposalsOpKernel<paddle::platform::CUDADeviceContext,
                                           double>);