distribute_fpn_proposals_op.cu 7.8 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <paddle/fluid/memory/allocation/allocator.h>
#include "cub/cub.cuh"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/detection/distribute_fpn_proposals_op.h"
#include "paddle/fluid/operators/gather.cu.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

#define CUDA_1D_KERNEL_LOOP(i, n)                              \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
       i += blockDim.x * gridDim.x)

int const BBoxSize = 4;

struct RangeInitFunctor {
  int start_;
  int delta_;
  int* out_;
  __device__ void operator()(size_t i) { out_[i] = start_ + i * delta_; }
};

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

static inline void transform_lod(const int* length_lod, const int lod_size,
                                 int* offset_lod) {
  int offset = 0;
  for (int i = 0; i < lod_size; ++i) {
    offset_lod[i] = offset;
    offset += length_lod[i];
  }
}

template <typename T>
static __device__ inline T RoIArea(const T* box, bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
static __global__ void GPUDistributeHelper(
    const int nthreads, const T* rois, const int lod_size,
    const int refer_level, const int refer_scale, const int max_level,
    const int min_level, int* roi_batch_id_data, int* sub_lod_list,
    int* target_lvls) {
  CUDA_1D_KERNEL_LOOP(i, nthreads) {
    const T* offset_roi = rois + i * BBoxSize;
    int roi_batch_ind = roi_batch_id_data[i];
    T roi_area = RoIArea(offset_roi, false);
    T roi_scale = sqrt(roi_area);
    int tgt_lvl = floor(log2(roi_scale / refer_scale) + refer_level);
    tgt_lvl = min(max_level, max(tgt_lvl, min_level));
    target_lvls[i] = tgt_lvl;
    platform::CudaAtomicAdd(sub_lod_list + tgt_lvl * lod_size + roi_batch_ind,
                            1);
  }
}

template <typename DeviceContext, typename T>
class GPUDistributeFpnProposalsOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* fpn_rois = ctx.Input<paddle::framework::LoDTensor>("FpnRois");

    auto multi_fpn_rois = ctx.MultiOutput<LoDTensor>("MultiFpnRois");
    auto* restore_index = ctx.Output<Tensor>("RestoreIndex");

    const int min_level = ctx.Attr<int>("min_level");
    const int max_level = ctx.Attr<int>("max_level");
    const int refer_level = ctx.Attr<int>("refer_level");
    const int refer_scale = ctx.Attr<int>("refer_scale");
    int num_level = max_level - min_level + 1;

    // check that the fpn_rois is not empty
    PADDLE_ENFORCE_EQ(fpn_rois->lod().size(), 1UL,
                      "DistributeFpnProposalsOp need 1 level of LoD");

    auto fpn_rois_lod = fpn_rois->lod().back();
    int lod_size = fpn_rois_lod.size() - 1;
    int roi_num = fpn_rois_lod[lod_size];

    auto& dev_ctx = ctx.template device_context<DeviceContext>();

    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({roi_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(platform::CPUPlace());
    for (int n = 0; n < lod_size; ++n) {
      for (size_t i = fpn_rois_lod[n]; i < fpn_rois_lod[n + 1]; ++i) {
        roi_batch_id_data[i] = n;
      }
    }
    Tensor roi_batch_id_list_gpu;
    framework::TensorCopySync(roi_batch_id_list, dev_ctx.GetPlace(),
                              &roi_batch_id_list_gpu);

    Tensor sub_lod_list;
    sub_lod_list.Resize({num_level, lod_size});
    int* sub_lod_list_data = sub_lod_list.mutable_data<int>(dev_ctx.GetPlace());
    Tensor target_lvls;
    target_lvls.Resize({roi_num});
    int* target_lvls_data = target_lvls.mutable_data<int>(dev_ctx.GetPlace());

    int blocks = NumBlocks(roi_num);
    int threads = kNumCUDAThreads;
    GPUDistributeHelper<T><<<blocks, threads>>>(
        roi_num, fpn_rois->data<T>(), lod_size, refer_level, refer_scale,
        max_level, min_level, roi_batch_id_list_gpu.data<int>(),
        sub_lod_list_data, target_lvls_data);

    Tensor index_in_t;
    int* idx_in = index_in_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());
    platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx, roi_num);
    for_range(RangeInitFunctor{0, 1, idx_in});

    Tensor keys_out_t;
    int* keys_out = keys_out_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());
    Tensor index_out_t;
    int* idx_out = index_out_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());

    // Determine temporary device storage requirements
    size_t temp_storage_bytes = 0;
    cub::DeviceRadixSort::SortPairsDescending<int, int>(
        nullptr, temp_storage_bytes, target_lvls_data, keys_out, idx_in,
        idx_out, roi_num);
    // Allocate temporary storage
    auto place = boost::get<platform::CUDAPlace>(dev_ctx.GetPlace());
    auto d_temp_storage = memory::Alloc(place, temp_storage_bytes,
                                        memory::Allocator::kScratchpad);

    // Run sorting operation
    cub::DeviceRadixSort::SortPairsDescending<int, int>(
        d_temp_storage->ptr(), temp_storage_bytes, target_lvls_data, keys_out,
        idx_in, idx_out, roi_num);

    int* restore_idx_data =
        restore_index->mutable_data<int>({roi_num, 1}, dev_ctx.GetPlace());

    cub::DeviceRadixSort::SortPairsDescending<int, int>(
        d_temp_storage->ptr(), temp_storage_bytes, idx_out, keys_out, idx_in,
        restore_idx_data, roi_num);

    Tensor offset_lod;
    int* offset_lod_data =
        offset_lod.mutable_data<int>({lod_size + 1}, dev_ctx.GetPlace());
    for (int i = 0; i < num_level; ++i) {
      Tensor sub_lod = sub_lod_list.Slice(i, i + 1);
      int* sub_lod_data = sub_lod.data<int>();
      transform_lod(sub_lod_data, lod_size + 1, offset_lod_data);
      int sub_rois_num = offset_lod_data[lod_size];
      Tensor sub_idx = index_out_t.Slice(0, sub_rois_num);

      multi_fpn_rois[i]->mutable_data<T>({sub_rois_num, kBoxDim},
                                         dev_ctx.GetPlace());

      GPUGather<T>(dev_ctx, *fpn_rois, sub_idx, multi_fpn_rois[i]);
      framework::LoD lod;
      std::vector<size_t> offset;
      memory::Copy(platform::CPUPlace(), offset.data(), place, offset_lod_data,
                   sizeof(int) * (lod_size + 1), 0);
      lod.emplace_back(offset);
      multi_fpn_rois[i]->set_lod(lod);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    distribute_fpn_proposals,
    ops::GPUDistributeFpnProposalsOpKernel<paddle::platform::CUDADeviceContext,
                                           float>,
    ops::GPUDistributeFpnProposalsOpKernel<paddle::platform::CUDADeviceContext,
                                           double>);