relu_op_simple.cc 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>
#include <vector>

#include "paddle/extension.h"

template <typename data_t>
void fill_constant_cpu_kernel(data_t* out_data, int64_t x_numel, data_t value) {
  for (int i = 0; i < x_numel; ++i) {
    out_data[i] = value;
  }
}

template <typename data_t>
void relu_cpu_forward_kernel(const data_t* x_data,
                             data_t* out_data,
                             int64_t x_numel) {
  for (int i = 0; i < x_numel; ++i) {
    out_data[i] = std::max(static_cast<data_t>(0.), x_data[i]);
  }
}

template <typename data_t>
void relu_cpu_backward_kernel(const data_t* grad_out_data,
                              const data_t* out_data,
                              data_t* grad_x_data,
                              int64_t out_numel) {
  for (int i = 0; i < out_numel; ++i) {
    grad_x_data[i] =
        grad_out_data[i] * (out_data[i] > static_cast<data_t>(0) ? 1. : 0.);
  }
}

std::vector<paddle::Tensor> relu_cpu_forward(const paddle::Tensor& x) {
  auto out = paddle::Tensor(paddle::PlaceType::kCPU);
  out.reshape(x.shape());

  PD_DISPATCH_FLOATING_TYPES(
      x.type(), "relu_cpu_forward", ([&] {
        relu_cpu_forward_kernel<data_t>(
            x.data<data_t>(), out.mutable_data<data_t>(x.place()), x.size());
      }));
  // fake multi output: Fake_float64 with float64 dtype
  auto fake_float64 = paddle::Tensor(paddle::PlaceType::kCPU);
  fake_float64.reshape(x.shape());

  fill_constant_cpu_kernel<double>(
      fake_float64.mutable_data<double>(x.place()), x.size(), 0.);

  // fake multi output: ZFake_int32 with int32 dtype
  auto zfake_int32 = paddle::Tensor(paddle::PlaceType::kCPU);
  zfake_int32.reshape(x.shape());

  fill_constant_cpu_kernel<int32_t>(
      zfake_int32.mutable_data<int32_t>(x.place()), x.size(), 1);

  return {out, fake_float64, zfake_int32};
}

std::vector<paddle::Tensor> relu_cpu_backward(const paddle::Tensor& x,
                                              const paddle::Tensor& out,
                                              const paddle::Tensor& grad_out) {
  auto grad_x = paddle::Tensor(paddle::PlaceType::kCPU);
  grad_x.reshape(x.shape());

  PD_DISPATCH_FLOATING_TYPES(out.type(), "relu_cpu_backward", ([&] {
                               relu_cpu_backward_kernel<data_t>(
                                   grad_out.data<data_t>(),
                                   out.data<data_t>(),
                                   grad_x.mutable_data<data_t>(x.place()),
                                   out.size());
                             }));

  return {grad_x};
}

std::vector<paddle::Tensor> relu_cuda_forward(const paddle::Tensor& x);
std::vector<paddle::Tensor> relu_cuda_backward(const paddle::Tensor& x,
                                               const paddle::Tensor& out,
                                               const paddle::Tensor& grad_out);

std::vector<paddle::Tensor> ReluForward(const paddle::Tensor& x) {
  // TODO(chenweihang): Check Input
  if (x.place() == paddle::PlaceType::kCPU) {
    return relu_cpu_forward(x);
  } else if (x.place() == paddle::PlaceType::kGPU) {
    return relu_cuda_forward(x);
  } else {
    throw std::runtime_error("Not implemented.");
  }
}

std::vector<paddle::Tensor> ReluBackward(const paddle::Tensor& x,
                                         const paddle::Tensor& out,
                                         const paddle::Tensor& grad_out) {
  // TODO(chenweihang): Check Input
  if (x.place() == paddle::PlaceType::kCPU) {
    return relu_cpu_backward(x, out, grad_out);
  } else if (x.place() == paddle::PlaceType::kGPU) {
    return relu_cuda_backward(x, out, grad_out);
  } else {
    throw std::runtime_error("Not implemented.");
  }
}

std::vector<std::vector<int64_t>> ReluInferShape(std::vector<int64_t> x_shape) {
  return {x_shape, x_shape, x_shape};
}

std::vector<paddle::DataType> ReluInferDType(paddle::DataType x_dtype) {
  return {x_dtype, paddle::DataType::FLOAT64, paddle::DataType::INT32};
}

PD_BUILD_OP("relu2")
    .Inputs({"X"})
    .Outputs({"Out", "Fake_float64", "ZFake_int32"})
    .SetKernelFn(PD_KERNEL(ReluForward))
    .SetInferShapeFn(PD_INFER_SHAPE(ReluInferShape))
    .SetInferDtypeFn(PD_INFER_DTYPE(ReluInferDType))
    .SetBackwardOp("relu2_grad")
    .Inputs({"X", "Out", paddle::Grad("Out")})
    .Outputs({paddle::Grad("X")})
    .SetKernelFn(PD_KERNEL(ReluBackward));