// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "paddle/extension.h" template void fill_constant_cpu_kernel(data_t* out_data, int64_t x_numel, data_t value) { for (int i = 0; i < x_numel; ++i) { out_data[i] = value; } } template void relu_cpu_forward_kernel(const data_t* x_data, data_t* out_data, int64_t x_numel) { for (int i = 0; i < x_numel; ++i) { out_data[i] = std::max(static_cast(0.), x_data[i]); } } template void relu_cpu_backward_kernel(const data_t* grad_out_data, const data_t* out_data, data_t* grad_x_data, int64_t out_numel) { for (int i = 0; i < out_numel; ++i) { grad_x_data[i] = grad_out_data[i] * (out_data[i] > static_cast(0) ? 1. : 0.); } } std::vector relu_cpu_forward(const paddle::Tensor& x) { auto out = paddle::Tensor(paddle::PlaceType::kCPU); out.reshape(x.shape()); PD_DISPATCH_FLOATING_TYPES( x.type(), "relu_cpu_forward", ([&] { relu_cpu_forward_kernel( x.data(), out.mutable_data(x.place()), x.size()); })); // fake multi output: Fake_float64 with float64 dtype auto fake_float64 = paddle::Tensor(paddle::PlaceType::kCPU); fake_float64.reshape(x.shape()); fill_constant_cpu_kernel( fake_float64.mutable_data(x.place()), x.size(), 0.); // fake multi output: ZFake_int32 with int32 dtype auto zfake_int32 = paddle::Tensor(paddle::PlaceType::kCPU); zfake_int32.reshape(x.shape()); fill_constant_cpu_kernel( zfake_int32.mutable_data(x.place()), x.size(), 1); return {out, fake_float64, zfake_int32}; } std::vector relu_cpu_backward(const paddle::Tensor& x, const paddle::Tensor& out, const paddle::Tensor& grad_out) { auto grad_x = paddle::Tensor(paddle::PlaceType::kCPU); grad_x.reshape(x.shape()); PD_DISPATCH_FLOATING_TYPES(out.type(), "relu_cpu_backward", ([&] { relu_cpu_backward_kernel( grad_out.data(), out.data(), grad_x.mutable_data(x.place()), out.size()); })); return {grad_x}; } std::vector relu_cuda_forward(const paddle::Tensor& x); std::vector relu_cuda_backward(const paddle::Tensor& x, const paddle::Tensor& out, const paddle::Tensor& grad_out); std::vector ReluForward(const paddle::Tensor& x) { // TODO(chenweihang): Check Input if (x.place() == paddle::PlaceType::kCPU) { return relu_cpu_forward(x); } else if (x.place() == paddle::PlaceType::kGPU) { return relu_cuda_forward(x); } else { throw std::runtime_error("Not implemented."); } } std::vector ReluBackward(const paddle::Tensor& x, const paddle::Tensor& out, const paddle::Tensor& grad_out) { // TODO(chenweihang): Check Input if (x.place() == paddle::PlaceType::kCPU) { return relu_cpu_backward(x, out, grad_out); } else if (x.place() == paddle::PlaceType::kGPU) { return relu_cuda_backward(x, out, grad_out); } else { throw std::runtime_error("Not implemented."); } } std::vector> ReluInferShape(std::vector x_shape) { return {x_shape, x_shape, x_shape}; } std::vector ReluInferDType(paddle::DataType x_dtype) { return {x_dtype, paddle::DataType::FLOAT64, paddle::DataType::INT32}; } PD_BUILD_OP("relu2") .Inputs({"X"}) .Outputs({"Out", "Fake_float64", "ZFake_int32"}) .SetKernelFn(PD_KERNEL(ReluForward)) .SetInferShapeFn(PD_INFER_SHAPE(ReluInferShape)) .SetInferDtypeFn(PD_INFER_DTYPE(ReluInferDType)) .SetBackwardOp("relu2_grad") .Inputs({"X", "Out", paddle::Grad("Out")}) .Outputs({paddle::Grad("X")}) .SetKernelFn(PD_KERNEL(ReluBackward));