elementwise_div_op.h 9.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15 16
#pragma once

17 18 19 20
#include <vector>
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_sub_op.h"

G
gongweibao 已提交
21 22 23
namespace paddle {
namespace operators {

24 25 26 27 28
template <typename DeviceContext, typename T>
void default_elementwise_div(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
29 30 31
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
32 33 34 35 36 37
    ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          DivFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseDivFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseDivFunctor<T>(), z);
  }
38 39
}

Q
QI JUN 已提交
40
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
41
class ElementwiseDivKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
42 43
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
44 45 46
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
47
    z->mutable_data<T>(ctx.GetPlace());
48

49 50 51 52 53
    auto& dev_ctx = ctx.device_context<DeviceContext>();
    int axis = ctx.Attr<int>("axis");
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
    auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
    auto pt_z = paddle::experimental::MakePtenDenseTensor(*z);
54
    pten::DivideRawKernel<T>(
W
Wilber 已提交
55 56 57
        static_cast<const typename framework::ConvertToPtenContext<
            DeviceContext>::TYPE&>(dev_ctx),
        *pt_x.get(), *pt_y.get(), axis, pt_z.get());
G
gongweibao 已提交
58 59 60 61
  }
};

template <typename T>
C
chengduoZH 已提交
62 63
struct DivGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout / y; }
G
gongweibao 已提交
64 65
};

66 67 68 69 70 71 72
template <typename T>
struct DivGradDX<paddle::platform::complex<T>> {
  HOSTDEVICE paddle::platform::complex<T> operator()(
      paddle::platform::complex<T> x, paddle::platform::complex<T> y,
      paddle::platform::complex<T> out,
      paddle::platform::complex<T> dout) const {
    paddle::platform::complex<T> y_conj(y.real, -y.imag);
73 74 75 76
    return dout / y_conj;
  }
};

G
gongweibao 已提交
77
template <typename T>
C
chengduoZH 已提交
78 79
struct DivGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
80
    return -dout * out / y;
G
gongweibao 已提交
81 82 83
  }
};

84 85 86 87 88 89 90
template <typename T>
struct DivGradDY<paddle::platform::complex<T>> {
  HOSTDEVICE paddle::platform::complex<T> operator()(
      paddle::platform::complex<T> x, paddle::platform::complex<T> y,
      paddle::platform::complex<T> out,
      paddle::platform::complex<T> dout) const {
    paddle::platform::complex<T> out_div_y_conj((out / y).real,
91 92 93 94 95
                                                -(out / y).imag);
    return -dout * out_div_y_conj;
  }
};

96 97 98 99 100 101 102
template <typename T>
struct DivDoubleDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return y * out * dout - x * dout;
  }
};

103 104 105
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
106 107 108 109
ElementwiseDivGrad(const framework::ExecutionContext& ctx,
                   const framework::Tensor* x, const framework::Tensor* y,
                   const framework::Tensor* out, const framework::Tensor* dout,
                   framework::Tensor* dx, framework::Tensor* dy) {
110
  int axis = ctx.Attr<int>("axis");
111

112 113 114 115
  ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX<T>(), DivGradDY<T>());
}

116
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
117 118 119
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
120 121 122 123
ElementwiseDivGrad(const framework::ExecutionContext& ctx,
                   const framework::Tensor* x, const framework::Tensor* y,
                   const framework::Tensor* out, const framework::Tensor* dout,
                   framework::Tensor* dx, framework::Tensor* dy);
124 125
#endif

Q
QI JUN 已提交
126
template <typename DeviceContext, typename T>
127
class ElementwiseDivGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
128 129
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
130
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
131 132
    using Tensor = framework::Tensor;

133
    auto* x = ctx.Input<Tensor>("X");
C
chengduoZH 已提交
134 135 136 137 138
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
139

140
    ElementwiseDivGrad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
G
gongweibao 已提交
141 142 143
  }
};

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
class ElementwiseDivOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput("DOut")) {
      ctx->ShareDim("DX", "DOut");
      ctx->ShareLoD("DX", "DOut");
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DX", "DDOut");
      ctx->ShareLoD("DX", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
C
chentianyu03 已提交
167
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Out");
168 169

#ifdef PADDLE_WITH_MKLDNN
170
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
171 172 173 174 175 176 177
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
};

template <typename DeviceContext, typename T>
class ElementwiseDivDoubleGradKernel : public framework::OpKernel<T> {
  using Tensor = framework::Tensor;

 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* Y = ctx.Input<Tensor>("Y");
    auto* Out = ctx.Input<Tensor>("Out");
    auto* ddX = ctx.Input<Tensor>("DDX");
    auto* ddY = ctx.Input<Tensor>("DDY");
    auto* dX = ctx.Input<Tensor>("DX");

    auto* dY = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* dOut = ctx.Output<Tensor>("DOut");
    auto* ddOut = ctx.Output<Tensor>("DDOut");

    int axis = ctx.Attr<int>("axis");

    if (dY) dY->mutable_data<T>(Y->dims(), ctx.GetPlace());
    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    // ddX_safe == null ? 0 : ddX
    // ddY_safe == null ? 0 : ddY
    Tensor ddX_safe, ddY_safe;
218
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dX, ddX, &ddX_safe);
219 220
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, Y, ddY, &ddY_safe);

221 222 223 224 225 226
    // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
    // dY = Out * dX * ddY / Y - dX * ddX / Y
    // dOut = - dX * ddY
    // To save memory, (1) dout can be used as 'tmp' tensor, (2) ddout can
    // inplace ddx
    Tensor tmp;
227
    if (dOut) {
228 229 230 231
      tmp = *dOut;
    } else {
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      tmp = ctx.AllocateTmpTensor<T, DeviceContext>(Out->dims(), dev_ctx);
232 233 234
    }
    if (dY) {
      // dX_div_Y = dX / Y;
235
      Tensor dX_div_Y = tmp;
236
      default_elementwise_div<DeviceContext, T>(ctx, dX, Y, &dX_div_Y);
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

      // NOTE(dengkaipeng): in the following ElemwiseGradCompute, for the
      // first output tensor is nullptr, the branch to calculate first
      // output tensor will not be activated, DivGradDx function will not
      // be called and can be ignored, the first branch has little effect
      // on running speed.

      // dY = Out * dX * ddY / Y - dX * ddX / Y
      ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivDoubleDY<T>>(
          ctx, ddX_safe, ddY_safe, *Out, dX_div_Y, axis, nullptr, dY,
          DivGradDX<T>(), DivDoubleDY<T>());
    }

    if (ddOut) {
      // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
252
      default_elementwise_mul<DeviceContext, T>(ctx, Out, &ddY_safe, &tmp);
253 254
      default_elementwise_sub<DeviceContext, T>(ctx, &ddX_safe, &tmp, &tmp);
      default_elementwise_div<DeviceContext, T>(ctx, &tmp, Y, ddOut);
255 256 257 258 259 260 261 262 263
    }

    if (dOut) {
      // dOut = - dX * ddY
      default_elementwise_mul<DeviceContext, T>(ctx, dX, &ddY_safe, dOut);
      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
      auto dout = framework::EigenVector<T>::Flatten(*dOut);
      dout.device(place) = static_cast<T>(-1) * dout;
264 265 266 267
    }
  }
};

G
gongweibao 已提交
268 269
}  // namespace operators
}  // namespace paddle