elementwise_div_op.h 2.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15 16
#pragma once

W
Wu Yi 已提交
17 18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
G
gongweibao 已提交
19 20 21
namespace paddle {
namespace operators {

22 23 24 25 26
template <typename T>
struct DivFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a / b; }
};

Q
QI JUN 已提交
27
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
28
class ElementwiseDivKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
29 30
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
31 32 33
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
34 35 36

    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
37 38
    ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          DivFunctor<T>(), z);
G
gongweibao 已提交
39 40 41 42
  }
};

template <typename T>
C
chengduoZH 已提交
43 44
struct DivGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout / y; }
G
gongweibao 已提交
45 46 47
};

template <typename T>
C
chengduoZH 已提交
48 49
struct DivGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
50
    return -dout * out / y;
G
gongweibao 已提交
51 52 53
  }
};

Q
QI JUN 已提交
54
template <typename DeviceContext, typename T>
55
class ElementwiseDivGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
56 57
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
58
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
59 60 61 62 63 64 65 66
    using Tensor = framework::Tensor;

    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
67 68 69

    auto* x = dout;  // Fake x, not used

C
chengduoZH 已提交
70 71
    ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivGradDY<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX<T>(), DivGradDY<T>());
G
gongweibao 已提交
72 73 74 75 76
  }
};

}  // namespace operators
}  // namespace paddle