margin_rank_loss_op.cc 5.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/margin_rank_loss_op.h"
Y
Yibing Liu 已提交
16 17 18 19 20 21

namespace paddle {
namespace operators {

class MarginRankLossOp : public framework::OperatorWithKernel {
 public:
22
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
23

Y
Yibing Liu 已提交
24
  void InferShape(framework::InferShapeContext *ctx) const override {
Y
Yibing Liu 已提交
25
    // input check
26 27 28 29 30 31 32 33 34 35 36 37 38
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
    auto label_dims = ctx->GetInputDim("Label");
    auto x1_dims = ctx->GetInputDim("X1");
    auto x2_dims = ctx->GetInputDim("X2");
    PADDLE_ENFORCE(
        (label_dims == x1_dims) && (x1_dims == x2_dims) &&
            (label_dims.size() == 2) && (label_dims[1] == 1),
        "All inputs must be 2-D tensor with shape [batch_size x 1].");
    ctx->SetOutputDim("Activated", label_dims);
    ctx->SetOutputDim("Out", label_dims);
Y
Yibing Liu 已提交
39 40 41
  }
};

42
template <typename T>
Y
Yibing Liu 已提交
43 44
class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
45
  void Make() override {
46
    AddInput("X1",
Y
Yibing Liu 已提交
47 48
             "(2-D tensor with shape [batch_size x 1]) The score for "
             "one item X1 to be ranked, from pairwise ranking model.");
49
    AddInput("X2",
Y
Yibing Liu 已提交
50 51
             "(2-D tensor with shape [batch_size x 1]) The score for "
             "another item X2 to be ranked, from pairwise ranking model.");
52
    AddInput("Label",
53 54 55
             "(2-D tensor with shape [batch_size x 1]) "
             "The label indicating X1 ranked higher than X2 or not, "
             "can only be +1 or -1.");
Y
Yibing Liu 已提交
56
    AddOutput("Activated",
57 58
              "(2-D tensor with shape [batch_size x 1]) Intermediate tensor "
              "to indicate whether each element of Output(Out) is activated.")
Y
Yibing Liu 已提交
59
        .AsIntermediate();
60
    AddOutput("Out",
Y
Yibing Liu 已提交
61
              "(2-D tensor with shape [batch_size x 1]) "
62
              "The output loss of MarginRankLoss operator.");
K
kexinzhao 已提交
63 64
    AddAttr<T>("margin", "(scalar, default 0) Margin for MarginRankLossOp.")
        .SetDefault(static_cast<T>(0));
65
    AddComment(R"DOC(
K
kexinzhao 已提交
66
MarginRankLoss Operator.
67

K
kexinzhao 已提交
68
This operator measures the loss given a pair of training sample
Y
Yibing Liu 已提交
69
{`X1`, `X2`} and the `Label` with attribute `margin`, where `Label = +1` 
K
kexinzhao 已提交
70 71
indicating X1 is ranked higher than `X2` and `Label = -1` otherwise. The loss 
is calculated as:
72

K
kexinzhao 已提交
73
$loss(X1, X2, Label) = \max(0, -Label * (X1 - X2) + margin)$
Y
Yibing Liu 已提交
74

K
kexinzhao 已提交
75
The attribute `margin` here helps make the predictions more robust.
Y
Yibing Liu 已提交
76 77
Denote the item ranked higher as the positive sample, otherwise the negative 
sample. If the score of the two samples satisfies 
Y
Yibing Liu 已提交
78

K
kexinzhao 已提交
79
$positive sample - negative sample < margin$
Y
Yibing Liu 已提交
80

K
kexinzhao 已提交
81 82
the pair of samples will contribute to the final loss, which will backpropagate 
and train the ranking model to enlarge the difference between the two scores.
83 84 85

For batch input with size `batch_size`, `X1`, `X2` and `Label`
all have the same shape [batch_size x 1].
Y
Yibing Liu 已提交
86 87 88 89 90 91 92

)DOC");
  }
};

class MarginRankLossGradOp : public framework::OperatorWithKernel {
 public:
93
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
94

Y
Yibing Liu 已提交
95
  void InferShape(framework::InferShapeContext *ctx) const override {
96 97 98 99 100 101 102 103 104 105
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Activated"),
                   "Intermediate(Activated) shouldn't be null.");
    auto dims = ctx->GetInputDim("Label");
    ctx->SetOutputDim(framework::GradVarName("X1"), dims);
    ctx->SetOutputDim(framework::GradVarName("X2"), dims);
Y
Yibing Liu 已提交
106 107 108 109 110 111 112
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

Y
Yang Yang 已提交
113 114
REGISTER_OPERATOR(margin_rank_loss, ops::MarginRankLossOp,
                  ops::MarginRankLossOpMaker<float>,
115 116
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(margin_rank_loss_grad, ops::MarginRankLossGradOp);
Y
Yibing Liu 已提交
117 118
REGISTER_OP_CPU_KERNEL(
    margin_rank_loss,
Q
QI JUN 已提交
119
    ops::MarginRankLossKernel<paddle::platform::CPUDeviceContext, float>);
Y
Yibing Liu 已提交
120 121
REGISTER_OP_CPU_KERNEL(
    margin_rank_loss_grad,
Q
QI JUN 已提交
122
    ops::MarginRankLossGradKernel<paddle::platform::CPUDeviceContext, float>);